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CHAPTER I 

INTRODUCTION 

t --- The Method of Invariant Imbeddinq 

This thesis i s  concerned with the practical application of a 

putidtar iersulatlon ai neutral pertiale trenaport theory called 

metbact of *arhnt iab.dding to neukoli pmtzatim problem. 

The lmerhat imbedding methad apparently began with the 

work sf the % I S S ~ X I  astrophysicist, Ambaremian, on the reflection of 

l i gh t  Fram an infinite half space El] 

set of "principles of invariance" and their systematic integration 

into a general theory including finite media, was carried out by 

Chandrasekhar [Z] . The method was applied to neutron transport 

problems k y  Bellman, Kalaba, and Wing [3] 

imbedding" which seem to have become the accepted name for the method. 

Invariant imbedding was first applied to neutron shielding problems 

The formlation of a complete 

under the name "invariant 

Beissner [q . 
Invariant imbedding i s  not a method for obtaining analytic 

or  numerical solutions of the Boltzmann equation. 

approach to the derivation of particle transport equations. 

invariant imbedding method concentrates on the radiation f l u x  crossing 

the boundaries of a region and on how t h i s  radiation flux varies as  

the thickness of the region changes, i n  contrast to the Boltemann type 

formulation i n  which a t t en t ion i s  concentrated on the variation of 

the radiation density with position inside a region of fixed thickness. 

The invariant imbedding approach leads t o  a nonlinear i n i t i a l  value 

It is  a different 

The 

a 
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problem instead of the l inear boundary value problem obtained by the 

Boltemann approach, 

Advantages of the invariapt imbedding method for shielding 

pWpoSe8 inclade: 1) restilts may be obtained ov8r the whole range 

ei potmilib Wld fbicknesmr i n  one problem: 2) the mmts are 

in a direCt3.y wehrl  form, L e . ,  reflection and h~nsmdssion matrices 

#hioh may be used to obtain the reflected ami transmitted fluxes for  

any incident flux; 

shields without increase in computer memory requirements because of the 

heterogeneity; 4) the method i e  efficient for thick shields (deep 

penetrations) because the t h e  required increases l inearly (or less) 

with the shield thickness, i.e.,  a 30 mean free path (mfp) thickness 

requires not more than twioe as long as  a 15 mpP thickness for  the same 

degree of heterogeneity; 

of the discrete approximations to the rigorous invariant imbedding 

equations may be easily estimated and controlled. 

3) the method applies rigorously to heterogeneous 

and 5 )  the error i n  the numerical solution 

Disadvantages include: 1) the method is fa i r ly  time consum- 

ing during thn 4ni-t.5~1 tysnsien+ =t the 5ef:zLzg =f g ~ c h l s z i  ~i-d &GS 

not appear t o  be economically competitive with other methods such a s  

t h e  Monte Carlo method when the shield i s  t h h  and 

not easy to apply in  other than plane geometry, hence only the plane 

geometry problem is considered i n  t h i s  thesis although the invariant 

imbedding method has been used to derive neutral particle transport 

equations i n  spherical and cylindrical geometries by Bellman, blab, 

2) the method is  

and wing [J, a1 
The derivation of plane geometry ref lecaon and transmission 



I . 
10 

equations by the invariant imbedding method given i n  Chapter I1 follows 

the work of Chandrasdchar i n  that the transmission equation i s  written 

. 

in terms of the difRzse transmission rather than the to t a l  translsission 

used by Bslfmnn, Eplrrbir, pad W i n g .  It was pointed out by Beissner [6]  

that thsjs ~IIJ both theamtiod ud expe*M Jwt&ficmtion for 

pe???C?Efdng t38Pnrclte cdlculatfons for the meollided flux and the 

=fuse (scattered) flux. The angular distribution of the total transmis- 

sion is very anisotropic a t  small thicknesses because of the delta func- 

tion i n i t i a l  condition whereas the angular distribution of the diffuse 

transmission is  relatively smooth i n  the region, leading one to suspect 

that a lower order angular approximalAon may suffice for accurate 

calculation of the diffuse transmission than for  the total transmission, 

No restriction on the position or energy dependence of the 

cross sections other than the one dimensional character of the plane 

geometry problem are made i n  the basic derivation, although the numerical 

solution is restricted to media composed of discrete layers. The number 

of discrete layers may be as large as desired and this i s  one of the 

of the problem, the solution s ta r t s  a t  zero thickness a d  builds up a 

slab shield one layer a t  a time so that, i n  principle, different cross 

sections could be used for each layer. 

The scattering process i s  restricted to the azimuthally symmetric 

case since this  i s  the case of practical interest ,  This assumption 

means that the scattering process i s  assumed to depend only upon the 

i n f t i a l  and final energies and the angle of deflection. This restriction 

is not necessary and a reflection equation for the general case i s  given 
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i n  Chapter II. 

The boundsry conditions are exact i n  the sense that they are 

inherent i n  the problem formulation and are satisfied exactly i n  a l l  

orders of approximation i n  contrast to methods such as the spherfcal 

harmoni08 (pn) nmthdd in w h b h  the beudary eordittcms are o d y  

satisfled approximately. 

The results ai this work indicate that  the most w e n t l  appliaa.. 

tions of the invariant imbedding method in plane geometry w i l l  probably 

be to  problems in which the moments method does not apply because of 

heterogeneity and, i n  which the attenuation is large enough to  make 

the Monte Carlo method unattractive on account of excessive computing 

time and, i n  which the scattering i s  sufficiently anfsotropic to make 

the application of the usual varieties of SNG or IXSN type transport 

theory solutions suspec t. 

The transmission matsix method of Yarmush, Zell, and Aronson [a] 
which also uses reflection and transmission matrices can be regarded as 

a special technique f o r  obtaining numerical solutions of the Boltzmann 

type boundary value problem. This method requfres t h e  diagonalisation 

and inversion of matsices contafning the material properties for each 

homogeneous layer of a shield and the subsequent combination of this 

information into an overall transfer m a t r i x  for the shield containing 

both the reflectton and transmission matrices and i s  quite different 

from the invariant imbedding method in which integration of a coupled 

set of differential  equations subject t o  specified i n i t i a l  conditions 

replaces the matrix inversions a t  each thickness of each layer. Both 

methods may be used to generate reflection and transmission matrices 
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that may be tabulated for  future use. 

The original impetus to investigate the application of the 

invariant imbedding method ta neutron shielding problems was provided 

by the osbrk of Beismor [bl . It appears that the later work by 

bi88mw [61 on the pomtrat;ian a i  neutmms threugh thin -ROOUS 

polyethy1ene rlrbs is the aaly other 8ppUeatfan of tho invarhnt 

hbdding lasthod to energy dependbnt problems reported to date. It 

is hoped that th i s  thesis has added sufficiently to the development 

and practical application of the invariant imbedding method so that  

other investigators will also be encouraged ta try the method. 

Outline of Thesis 

In Chapter I1 the invariant imbedding method is  used to derive 

rigorous equations for the reflection and translldssfon of neutral 

particles i n  plane geometry. An analytic solution of the reflection 

and transmission equations i n  a very restricted case i s  also presented. 

The numerical solution of these reflection and translnfssion 

equations is d i s c u s n d  4 2  Chqter =I. 

are approximated by a finite se t  of coupled firstmorder nonlinear 

differential  equations subject to specified i n f t i a l  conditions. 

numerical techniques for  the solution of th is  set of differential  

equations are discussed and exponential approximations are introduced in  

order to take advantage of the physics of the radfatfon penetration 

problem. 

exponential approximations to the solutSon of the reflectSon and 

tmslnfssion equations i s  presented along with the results of an 

?,-E%, %he & ~ T G - G  +--ti~~,s 

Various 

The application of the simplest and most successrul of the 

. 
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investigation of %e stabi l i ty  of the approxl.mation. 

Bumerioal results for four different problems are presented i n  

Chapter IV. 

(one velocity) case and are presented t o  show some aspeste of the 

The first  two problems are restricted to the monoenergetic 

s h r r a b @ % 8 u O  bOh8VbP Of fhs rOflOdd.OZt ud b%llEdSSiOZl W b b l  sad 

to paw the numurical solution techttique before prweeding to mere 

waplioatnd 48588, 

neutrons through large thicknesses of water (up to 210 a). 

agreement between the invariant imbedding results and other transport 

theory methods is shown for both the transaitted neutron dose ra te  

and for the neutron energy spectrum. 

relatively thin three layer iron-polyethylene-iron shield. 

agreement between Monte Carlo method results f o r  t h i s  shield and the 

invariant imbedding results is shown. 

The third problem- considers the penetration of 

Satisfactory 

The fourth problem m s i d e r s  a 

Satisfactory 

Conclusions and suggestions for further work are discussed in 

Chapter V, 

The details  of the input and output data processbg and the 

a scn~5gt.d- ~.c-pz+,ez ==&s ~ - 2  ~~~~~*~~ Ly k\s + i ~ ~ i ~ A ~ ~ ~ *  

While it is  clear that some items are relatively more important 

than otheq  the reader is cautioned that  i n  computer oriented work such 

as this, there are no tsaly unimportant details. 

problem is  very sensitive t o  small detai ls  because of the very great 

attenuation. An attempt has been made t o  point out the most serious 

d i f f icu l t ies  encountered i n  this work. 

The deep penetration 
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CHAPTER I1 

REFLECTION AND TRANSMISSION I N  PLAlQE GEOMETRY 

Introduction 

Equations for the reflection and transmission of radiation by a 

slab of Finite thickness i n  one dimension and of infinite extent i n  the 

o t b r  tam dhmsienr are derived in this chapter by means of the method 

of hvarbnt bbddlng. 

dependmeu of the oroas seotiona are made other than the one dimensional 

character of the problem. 

Ba resWL0tians on the pasition o r  enerw 

The reflection and transmission equations (2.31) and (2.32) 

are specialized t o  the case of practical interest  i n  which the scattering 

process i s  assumed to be aeimuthally sgnmnetric, i.e., that  the scattering 

process depends only upon the i n i t i a l  and f ina l  energies and the angle 

of deflection. 

equation for the general case is  given i n  equation (2.24). 

This restriction is  not necessary and the reflection 

The boundary conditions are exact i n  the sense that they are 

inherent i n  the problem formulation and are satisfied exactly i n  a l l  

orders of approldmation. 

scattering considers a monoenernetic conical source of strength 1/2,1f1 

per unit  time with energh E' and direction cosinePo (see Fig. 2). 

The analytic solution of these reflection and transmission 

The practical case with azimuthally symmetric 

equations i s  given for the monoenergetic case with scattering i n  only 

the $ direction i n  a homogeneous medium. 

Derivation of Reflection and Transmission Equations - 
Consider a slab extending from z=O to z=s and of inf ini te  extent 

fi the x and y directions. Let 9 be a position vector from the origin 

14 



of the x,y,z coordinate system t o  the particle position. 

particle direction be specified by the uni t  vector 'n where fi is 
speoified by the polar angle 0 and the aaimuthal angle 8 as shown 

Let the 

in Fig, 1. The u n i t  vector fi has components 

The element of solid angle d f i  around 5 is 

Defining 

then 

The position vector 1: has components 

x = r s i n 8  COS 8 

y = r sin8 sin @ 

e = r cos e 

The differential  element of volume dV around r i s  

dV = d r  = r2 s i n e  d 8  d 8  dr  

2 = r  d l l d r  

= r 2 d y d Q  dr 
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Let I?(?, 3 ,E, t)dVdQdE represent the number of particles whose 

position vectors l i e  within dV around 5, whose directions l i e  within d R  

aroumiZ , whose energies l i e  within d~ round E, measured a t  time t. 

Then *e number of particles, per unit volume a t  position+, per unit 

energy at  energy E, at tb te  t, i s  

n(r,g, t) = H(r, ii ,E, t)m (2.7) 1 
Let the mator velocity be % and the scalar veloeity be V. 

Then 

(2.8) 
-L 

v = V X .  

The number of particles per unit time, passing through a unit 

area normal t o  the direction of motionz, a t  position$, per unit 

energy E, a t  time t, i s  vN(r',&E,t). 

un i t  time, passing through a un i t  area i n  the x,y plane, a t  position 

r, per unit  energy a t  energy E, a t  time t, is  Icose)  dl(r,_lSE,t). 

The number of particles per 

3 3 2  

B($, 5 , E , t )  and vN($,c,E,t) will be called the t'angular 

density" and the "angular f l d l  respectively. 

The number of particles interacting per uni t  time, 

volums a t  pos i t ions ,  per unit solid angle i n  directfonx, per u n i t  

energy a t  energy E, a t  time t, is  C($,E,t)vN($,Z,E,t) where 

per unit  

o-(s,E,t) i s  the to t a l  macroscopic cross section (units of inverse 

distance). 

The quaritity o-($,E,t) d represents 

the probability that a particle wlll undergo an 

through a distance d. I n  passing from 5 t o  z + 
a distance 

I 1 (to first order i n  d 

interaction in passing 

h, a particle t r a w l s  

d = h /  I c o s 0 ) .  ( 2 . 9 )  
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Now consider only tima independent cases and suppress the  time 

variable. Int f ( $ , h E :  3 ',E1)dEdR be the probability that a particle 

w i t h  in i t ia l  energy E' atxi direction of motion 51, will emerge a f te r  an 

intersotion with a target  nwleus with an energy i n  dE about E and a 

dimetion of -tien in d a  aboutz. !J!he quantity f(F.6 , B ; a t , E t )  

is normalimd eo that the btegral over all e ld t  energies and e a t  direc- 

tions is unity, i . e . ,  

dE d R f ( $ , f i , E ;  &',E') = 1 . (2.10) / /  
In the case of azimuthally symmetric interactions with sta- 

tionary nuclei, the usual case, the probability that  a particle w i l l  

emerge in any particular direotion can only depend on ( a t  most) the 

partiole's i n i t i a l  and Mnal energies and on the angle between its 

original direction ( 8 I, ') and i t s  direction a f te r  collision 

X ( e , C P ) .  Let 

Then 

(2.12) 

and we can now define a quantity g(f,p , E ; / u * , E ' )  such that 

g(5.P ,E;,,%' ,E' )ad = d q' f(5, & ,E; fi' , E ' ) d E d i  (2.13) i" 
is the probability that  a particle with i n i t i a l  energy E' and i n i t i a l  

direction cosinep' will emerge af te r  a collision with an energy i n  dE 

about E and a direction cosine i n  d p  about ,u  . 
Let C($ ,F  ) k %!le EePn Zt?Ebe" of rel.ox?Ariaa pex- anllisinn 



t 

(2.14) 

end*- 5' st ab* 6*, a d  6 are the fission, Inelastic, 

elastic,  n,2n, and toto1 em821 sections, respectively cnd Y is the 

mean number of neutrons per fission. 

The total expeuted number of particles per unit time, per unit 

volume a t  position 'r, transferred into dE about E and into d f i  about 

5 from a n  other energies ami directions is  

Now l e t  there be incident upon the e=s face of the slab an 

angular flux of one particle per unit  time, per un i t  area normal to  the 

direction of motion, with energy E' and direction XIe 
(2.15) becomes 

For this  flux, 

(2.16) 

where the differentials dEdR have been cancelled out. 

For th i s  input define an angular reflected flux r(s,b ,E;s ' ,E ' )dEdfi  

representing the expected number of particles per unit  time reflected 

through a unit  area normal to the direction of motion, a t  position 

z=s, with energy i n  dE a b u t  E and direction in d R  a b o u t 5  . 
!?ox &2d addftioilal l a p =  of +,%chess h +& the z 3  %ee ef 
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the slab and account for the particles reflected from the slab of 

thickness s+h in terms of the reflection from the slab of thickness s 

plus interactions i n  the layer of thickness h (see F'ig. 2). The slab 

properties are ass& to be uniform i n  the x,y plane and variable 

w i t h  pedt&on in the I dlreetiorr. The dls4~i1100 travelled by an incident 

where -1L ,ut < 0. 
The probability that an incident particle w i l l  interact while 

traversing the layer of thickness h is (to First order in h) 

d s , E ' )  h / 1p.q (2.18) 

The reflected angular flux due to interactions of the incident angular 

flux w i t h  t he  material of the layer of thickness h is (to first order in 

h) 

d s , E '  )(h/ !,a'I)C(s,E' )f(s,p, 8 ,&,a' , 8 ' ,E' (2.19) 

where -1c_/cL' < 0 ,  O < , u < l ,  O I q '  4 2 f l  , and O L Q I  2 T  . 
The angular f l u x  incident upon the c=s face of the slab due to 

interactions of the incident angular f lux  with the material of the 

layer of thichess h is (to first order i n  h) 

where - 1 f p ' < O ,  - 1 g p ~ 0 ,  0 L 8'" 2 r  , and O r  1. e n ' .  

The probability t h a t  an incident particle can pass from B=S to 

z=s+h without interaction is given by (to first order i n  h) 

1 - @(s,E')(h/ J#' I (2. a) 
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Now sum up a l l  processes leading to terms of first order or 

less i n  h to  obtain 

w h e r e - l C _ p l < O ,  04/41, 0 4  # 1 C 2 T , a n d O - L c f ) G  2 W .  

The various terms on the r ight  hand side of (2.22) may be 

explained as follows: 

a particle will interact i n  (sth,s) and be back scattered: the second 

term is the probability that  a particle w i l l  in teract  in (s+h,s) and be 

forward scattered times the probability of reflection from the e=s face 

the first term i s  (to order h) the probability that  



23 

times the probability of no interaction i n  (s,s.+h); the third term is the 

probability of no interaction i n  (s+h,s) times the probability of 

reflection from the'eas face tinSes the probability of no interaction i n  

(s,s+h); 

( t+b,s)  

prob.brlli~ ef btezbt ion in (s,s+h) followbd by io- matter; the 

iyith tomu is the p b a b l l . 5 ~  of no fnturaction in (r+h,8) t h e 8  the 

probability of reflection from the e-s face times the probsbiuty of 

interaction i n  (s,s+h) foIlowud by backward soatter times the 

probability of reflection from the x r s  face times the probability of no 

interaction i n  (s,s+h); and the last term representg terms of order h 

and higher. 

the fourth term is the probability of no interaction i n  

the prokbiUty of reneetien re am tho s w  faae t i~m the 

2 

Equation (2.22) may be rewritten i n  the following form 
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Now take the l i m i t  as h approaches zero to obtain a general equa- 

tion for the reflection in plane geometry in the form 

not a function of the aefauthal angle and 

d p ( s * p ,  4) , E ; / U . l ,  q ' , E ' )  = 2w r(s,,&, E p ' , E ' ) .  (2.25) 6'" 
Using (2.13) and (2.25) in (2.24) Sields 



. . .  

The equation for the diffuse transmission analogous to equation (2 .22)  
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. 
P" 
Ir  L 

The various terms on the r igh t  hand side of (2.28) may be explained 

as  follows: 

particle w i l l  interact i n  (s+h,s), be scattered forward, and penetrate 

the slab of thickness s without fbrther interaction: the second term is  

the probability that a par t ic le  w i l l  interact i n  (s+h,s), be forward 

scattered. and diff isely transmitted: the third term is the probability 

of no interaction i n  (s+h,s) times the probability of diffuse transmis- 

sion through the remainder of the slab: 

probability of no interaction i n  (s+h,s) times the probability of 

reflection from the s s  face times the probability of interaction i n  

(s, s+h) followed by backward scatter times the probability of no further 

interaction; the f i f t h  t e r m  i s  the probability of no interaction i n  

(s+h,s) times the probability of  reflection f'rom the e=s face times 

the probability of interaction (s,s+h) followed by backward scatter 

the first term i s  (to order h) the probability that a 

the fourth term is the 

At----- A L -  - - - L - L A ? A A -  - m  3 a a A . m -  & - - - d e e a - . .  
LLlIlUJ bLlU PKULJUUALLbJ U A  U I A A U P W  U A Q A & o I I L L Y O I U & I  t k e * G h  *&e =$st the 
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2 slab: and the last term represents tenas of order h or higher. 

The diffuse transmission equation for  the case with aeimath.1 

symmetry is 

t b g L , E ; p ' , 1 9 ' )  = 

The factors of Ir' i n  (2.26) and (2.29) can be eliminated and 

these equations transformed into a more synnnetsio form by making the 

substitutions R ( s ? , E ; p l , E ' )  = r ( s , p , E : p l , E t ) /  (qk ' I )  and 

T(s,p,E:p1,E9)  = t(sp,E:/l,E1)/ (4M'J ) . This i s  equivalent 

t o  changing the incident flux leading t o  (2.16) from one particle per 

unit time, per unit area nom1 to  the direction of motion, with 

energy E9 and direction _?ig to an incident flax of 1/4T particles per 

unit time, per unit area i n  the x,y piane, dtii onurm- E? a r i  CEFW*&GE 

a'. 
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With this transformation (2.26) becomes 

- d T ( S Y , E ~ ' , E ' )  = 
ds 

~ ~ ( s , E ' ) C ( S , E " ) ~ ( S ~ , E ~ ' , E ' ) O ~  

Equatiorrs(2.31) and (2.32) are the basia equations for the 



.I . .  
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energy and angle dependent reflection f r o m  the transmission through a 

slab of thickness s i n  plane geometry. 

The only assumption made i n  deriving these equations was that  

the scattering process -8 assumed to be azimuthally sgapnetric, L e . ,  that  

tb8 sB.t- -888 de- trpon the initbl and f-1 mergier 

und tho angle of deflection. 

The botaadary aonditians are exact for the oaee i n  which IZO 

particles except those from the source are incident upon either face of 

the slab. 

cross sections were necessary. 

lo restrictions on the position or energy dependence of the 

Equation (2.24) with the substitution of R(s ,p  ,E:pl,E1)/ ( + @ ' I )  
for  r (8 ,p ,E;p1 ,E1)  is  i n  the monoenergetic case the same as the 

reflection equation given by Chandrasekhar [2] . 
transmission equation i s  nearly but not quite the same as  the 

monoenergetic transmission equation given by Chandrasekhar. 

version i s  valid only for  a hombgeneous medium, i.e., the factor 

exp[-(l/lk.~l) /O-(sl,E)dsn] would be exp [ - ( l /P&(s,E)  s]in 

Chandrasekhar ' s version. 

The cormsponding 

Chandrasskhar's 

S 

0 

Analytic Solution i n  a Restricted Case 

Analytic solutions of the reflection and transmission equations 

If particles are assumed to may be obtained for  very restricted cases. 

1) travel only i n  the 2 e direction and 2) not to change energy and 3) 

ff the m e d i u m  is homogeneous, equations (2.31) and (2.32) reduce to 
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R(O)  = T(O) 0 ,  (2.33) 

and 

because in the f'irst case the particle direcfiion does not change and 

in the second case the direction change i s  the same (180 degrees). 

Equation (2.33) for the reflection can be solved directly by 

the standard technique for a first order differential equation of the 

Eioatti t j 7 p  p: n*e Fx?n;t is 



R ( s )  = 2 
1 

A' - 1 coth(Bs) = A 

where 

A =-++ c g 1.01 (2.39) 

and 

B = r C  g(1,-1) (2.40) 

Equation (2.38) for the reflection is the same as given by Wing [8] . 
Equation ( 2 . 9 )  for the diffuse transmission is more difficult. 

It is helpful ta f'irst rewrite (2.34) in terms of the total transmission 

and obtaln the analytic solution of the t o ta l  transmission equation. 

The diffuse transmission solution is then obtained by subtracting the 

uncollided component. The total transmission equation analogous to 

(2.9) is 

where the initial condition is now 

The solutions 

reflection in 

Tt ( 0 )  = 2. 

(2.41) 

(2.42) 

of (2.41) and (2.34) can be expressed in terms of the 

the forms 

= = l'csch( Bs ) R ( s )  (2.43) 
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and 

T ( s )  = Tt(s) - 2 exp(= c s )  . ( 2 . W  

Slightly less restrictive assumptions can be d e ,  

~ r r % A e ,  fnstead ai as- that a partiole i s  a1-F scattered 

In 

8tFd.ght feraud or straight backward, UI average value of th6 direc- 

+don oosina cottfd be used. 

could also be relaxed i f  desired (to disorete layers). 

The rss t r ia t fan ta a htmogarmaas d u m  

Discussion 

An equation for  the t o t a l  transmission i s  obtained by deleting 

the two terms containing exponential factors *om (2.32) and changing 

the i n i t i a l  condition to 

The derivation of this chapter was i n  terms of the diffuse 

transmission even though the resulting equation is more complicated. 

The angular distribution of the to t a l  transmission is very anisotropic 

a t  mall thicknesses because o f  the delta function i n i t i a l  condition 

ahereas the angular distribution of the diffuse tranwaission is  

relatively smooth i n  the region. This leads one to suspeat that a l e s s  

accurate angular approximation may be needed for the calculation of the 

diffuse transmission than for the to t a l  tsansadssion near the origin.  



CHAPTER I11 

MWMEXICAL SOLUTION OF "fE REFLECTION 

AND TRANSMISSION WUATIONS 

Introduction 

T b  plane -try reflection and transsdssion equations derived 

k k  C h P h F  a: Up0 fimrotls bUt 08EUlOt b0 8dd baOU80 Of the b t O @ f i  

teras, 

the integrals are approximated by f in i t e  sums thereby obtaining a f i n i t e  

set of coupled first-order nonlinear ordinary differential  equations. 

The solution of this  system of equations by ordinary methods such as 

the Runge-Kutta and t h e  Adam methods is  then discussed. Finally, a 

systematic method of deriving numerical methods for t h e  solution of 

differential  equations based upon exponential approximations i s  intro- 

duced and t h e  application of the most successful of these methods to the 

reflection and transmission equations is given. 

As the f'trst step in the nnaeriaal solution of these equations, 

The numerical solutions based upon approximations that are 

exact for exponentials which are discussed i n  th i s  chapter would seem 

t o  be useful in  many other applications i n  which it i s  known from 

the physics of the problem that exponential behavior i s  to be expected. 

Reduction t o  a Finite Set of Differential Eauations 

I n  order t o  solve equations (2.31) and (2.32) numerically, the 

integral terks are replaced by f l n i t e  sums of the form 

whom the abscissas 5 and weights wk are to  be chosen i n  accordance 

nn 
33 
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with the particular numerical integration formula chosen. 

form af (2.31) is 

The discrete 

d 
dx - R(I,J) = 

where the slab thickness is now x insbad  of s, N is  the numbor of 

particle states,  p i s  the stab-to-state transfer probability analogous 

to  (2.13) 

cosine assigned t o  s t a t a  I, W(1) is  the product of the energy and 

angular integration formula weights divided by the  absolut. value of the 

direction cosine for s ta te  I, and a11 quantities are functions of posi- 

tion except the numerical integration (quadrature) formula abscissas 

and weights W. 

(so0 Appendix A for  def ini t ion) , / ( I )  i s  the direction 

The numbr of particle s ta tos ,  N, is defined as  tho product of 

the number of discrete energy values used i n  the energy integrations 

and the number of discreto direction cosines usod i n  tho angular intogra- 

tions over ( -1 ,O)  and (0.1). Particlo states from 1 to I havo a l l  



, 
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possiblo energies combined w i t h  a l l  possiblo posi t iw direction cosines, 

Tho particle direction is rovorsod without chango i n  onergy group by 

adding or subtracting 19 from tho s ta te  index. 

state index (1 

J is tho incidont particlo 

J I) and I is the o x i t  particle state  index 

(1+1C 162111). 

--!J 

S(I,J) = W(I)W(J) W)C(J)P(I,J) (3.31 

the discroto form of the reflection equation becomos 

. .  
K = l  H + 1  

quat ion  (3.4) nprosonts a couplod set of 2 f i rs t -odor  

nonlinear ordinary differential  equations subject to tho i n i t i a l  condi- 

t ion 

R(I,J) = o ( 3.5) 

a t x  = 0 for  all I and J. 

The corrosponding discroto form transmission equation is 
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k.. . C) 

whore the e a i t  particle s ta te  index, I, for transmitted particles is i n  

(1,191 and the i n i t i a l  condition is 

T(I,J) = o (3.7) 

a t  x = 0 for all I urd d. 

Tho nerining int.gral m r  tho total  cmai soutien for the 

O f i t  *aSadttsd 8 h b ,  E(I), (3.6) i8 b b0 0VdWt.d 158- 

that  the t o t a l  cross section varies i n  a stepwiso mannor, i . e . ,  that  

tho slab is composod of discrota layors so that  the composition does not 

vary with position within a lrpr. 

of the transmitted flux in tho  gonoral cas. as 

Defining the nneallided component 

20 

i n  the case of discreto layors the uncollided 

with initio1 condition 

9 (3.8) 

component becomes 

(3.9) 

Transmission equation (3.4) can now be rowritten using tho 

abovo dofinition of the uncollidod component of the transmittod flux 

i n  the form 
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whoro tha dopndenco of Tu upon x has been suppressod i n  order to bo 

consistent wi th  the notation for tho diffuse transmission T. 

Tho discrete form total transmission oquation is  

with i n i t i a l  condition 

[ 0 when I = J 

~ / W ( I )  otheruiso. 

T t  (1.J) = 

(3.13) 

Comparison of oquations (3.11) and (3.12) for tho diffaso and 

total transmission, raspectivoly, shows t ha t  while tha diffuse trulsmis- 

sion oquation is mom complicated, tho additional e f for t  required i 8  

small compared to tho o f f o r t  roquirod to ovaluato the doublo sum term 

which appears i n  both oquations. 



Solution & &ans of Ordinary Methods 

Equations (3.4) and (3.ll) for  tho reflection and diffuse 
2 transmission constituta a set of 2(N) couplod first-order differential  

q a t i o n s .  A d t i t u d o  of methods for tho solation of mah oquationa a m  

~ d . h b 1 0  th. l & b l r t t t l . O  021 m f i O 8 l  {9, 101 I Th. 8 p P u O 8 -  

tim of two of the mst widely mod arrthods w i l l  bo di8etl66d in thl8 

section. 

A fourth-order Rungo-Kutta aethod was tr ied first. Tho Rungo- 

Kutta methods have the advantage of Iming '00th solf-starting and relatively 

stable. The Runge-Kutta wthods knro oventurlly discarded bocauso: 

1 )  mro than evaluation of the  righthand-sido of tho difforential equa- 

t ion is  required a t  each step and th i s  i s  very time consuming in t h i s  

problem due to the double sum on the right-had-side of (3.4) and (3.U) 

or  (3.12), and 

step. 

2) it is  d i f f icu l t  to estimate the truncation error per 

Next a fourth-order Adams method based on the Monitor 

System library subprogram INDV, DPMT [a] was used. The A d a m  method 

requires only one evaluation of the right-hand-side of the differential  

equation a t  each step and the truncation error per step may be 

relatively easily estimated. 

special starting equations a r e  required and a large amount of f a s t  

memory space is required. 

required a t  one point i n  the Adamas method to control the growth of 

round off error due to subtraction of nearly equal numbers f r o m  each 

other. 

The method is  not self-starting so that  

I n  addition double precision operations are 

In  summary, the Runge-Kutta method was easy to apply but was 
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very slow and lacked an easy method of estimating the truncation error 

per step, and the A d m a  method while much faster with easy estimmte of 

the truncation error per step required an excessive w u n t  of core 

storage and special starting equaCions makhg changes I n  step sice 

mom dwi%dt. 

The reflection and transmission matrices can be expected on 

physical grounds to approach simple exponential growth or  decay in each 

element as the thickness of a shield layer increases. 

reasonable to investigate approximations that would be exact for  simple 

Thus it is  

exponential functions as a l ~ ~ t i V 0 8  to the polynomial approximations 

of the l a s t  section. 

of Hansen, k e n ,  and Litt le[U] and Certaine [12] on numerical solutions 

of the reactor kinetics equations. 

This approach was, i n  part, motivated by the work 

The following systematic approach may be used to generate many 

diffsrnnt t-ypen of erpnnential approdmatfons together Wpth error 

estimates for  the procedures. Let the differential  equation be given 

bY 

Y' (X I  = f ( x , d  (3.14) 

with i n i t i a l  condftion 

Y(X0) = Yo (3.15) 



E( -' 

. 

n = 0,1,2,..... 

where w(x) is an as  yet  unspecified weight function. 

Subtract wry(x) from both sides of (3.14)* multiply both sides 

by exp(.wrx), and integrate h.om xa to % t o  obtain 

The left-hand-side of (3.18) is a perfqct differential  and may be 

readily integrated to give 

now be approximated in various manners. A first-order exponential 

approximation results i f  the simple Mer approxin+on 

[?&c = (sh)fr + 2 
J xr 
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where x < u < xr*, i s  used to approximate the integral i n  (3.29) SO 

that 
r 

so tha t  the term containing fr-wryr i n  (3.21) w i l l  be eero and (3,2l) 

becomes 

The first-order approximation (3.24) i s  the exponential 

equivalent of Euler's method. 

an exponential deperrdence of y on the lnciepenaent variable x. 

It i s  remarkably simple but exact for 

A second-order exponential approximation results if the 

trapezoidal rule 

'1. 
is used to approximate the integral in (3.19) so that 
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(3.26) 

The seoond-order e%penential rpprodaartlon (3.26) whioh was obtabd  

bs mans of the trapesoidal rule is an implicit equation in tha t  the 

value of Ir* depeds upon the unknown value of Yr* that i s  being 

sought. 

When s is even, and the midmint rule 

5 - 4 2  

i s  used, then (3.19) becomes where xr4/2 4 < xr+s/2 

. 

eq(wrxr+s/2 ) y3 I (v). 

The second-order exponential approximation (3.28) i s  a very simple 

explicit equation that can be used to predict the new value of y. 

Bqutions (3.26) and (3.28) can be conbind so as to yield an 

error estimate for the second order exponentfsl approximation. 

s=2 i s  used in (3.28) the predicted value of  y a t  xr+l is 

If 

g+1 = exp(nwr) 9;. - 1 
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where the superscript p denotes a predicted value, and i f  s=l is used in 

(3.26) the corrected value of y at s+l is 

rshere the s~aperseript e denote8 a aarrctetd value. How make the 

assumption that, for raeall enough h, the asoond derivative term8 in 

error per step when the second-order predictor-corrector pair (3.29) and 

(3.3) are used in the form 

(3.31) 

which is entirely analogous t o  the usual relation for polynomial 

a p p r o h t f o n s  L9] . 
The error estimate for  the first-order expanential predictor 

obtaining; by ignoring the error term i n  (3.24) is 

where x < U < X ~ + ~ .  This error may be estimated by r 

so that the approximate relative error i n  yr+l compared to yr when 
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the flrst-order exponential approldmation (3.32) is used i s  

. 

(3.35) 

Both the first and secotd order exponential approximations wre 

Mod. In praotice the s e e d  order proaedtrre was not as geed- a8 the 

first order procedure beoause of a 'dentq of tbe I O Q O ~  arder 

procedure toward a type of instabi l i ty  in  which alternate steps diverge 

i n  opposite directions from the true solution and the loss  of flexibility 

because the second order procedure i s  not self  starting. 

The final version of the numqwical solutfon of the plane 

geometry reflection and transmission equations was therefore based updn 

the first  order exponential predictor (3.32) with the stepwise error 

estimate (3.35). 

reflection and diffuse transmission equations (3.4) and ( 3 . U ) .  one must 

be careful t o  define suitable weighting functions. Because of the eero 

i n i t i a l  condition, the righLhand-sides of differential  equations (3.4) 

and ( 3 . U )  must be s p l i t  into vanishing and nonvanishing terms. 

Fortunately, the nonvanishing termhi may be integrated analytically. This 

is a major factor in the stabfli ty of these numerical procedures 

particularly i n  the case of the reflection equation i n  which the non- 

vanishing term is always of the same order of magnitude as the term 

which vanishes a t  the origin. 

When applying these exponential appro-tions to the 
\ 

Rewrite equation (3.4) i n  the form 

d R(X,I, J) = B(X,I,J) + K~(x,I. J) (3.36) 



45 

L '  

(3.37) 

and Kr(x,I,J) i s  the rest of t h e  right-hand-side of (3.4). 

t m m  of Kr(xJ,J) eentains B(x,I,J) a8 a faotor 

Because 

(3.38) R(O,I,J) = Kr(OrI,J) = 8 

and 

~ ~ ( x . 1 ,  J)  = ~ ~ ( x . 1 ,  J)/R(x,I, J)  (3.39) 

is finite a t  the origin. 

Following the same procedure as before, one obtains i n  the 

first order exponential approximation 

J!  

Now, i f  B( S, I, J )  is a constant i n  the interval s = x to s = xih 

(i.e., a slab composed of discrete layers) equation (3.40) can be 

integrated t o  give 

with relative error estimate 
A 

i n  which the particle state i d i a e s  have been suppressed for clarity.  

Equation (3.11) for the diffuse transmission is  rewritten i n  
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the form 

a ’  
F c 

- d T(x,I,J) = Fl(x,1,J) + Kt(x,I,J) 
dx (3.43) 

(3.44) 

and Kt{x,1,J) is the r e s t  of the right-hand-side of (3*ll)* 

the reflaction case 

As in 

T(O,I,J) = Kt(O,I,J) = 0 (3.45) 

( 3 . 4 6 )  

i s  f in i t e  at the or ig in .  

Applying the firstcorder exponential approximation to the 

diffuse transmission equation written in this form yields 

T(~+~,I,J) = exp P t ( x , r , ~ ) h ]  T(X,I,J) + 

F1(s,I,Jjexp [-Wt(x,I,Jjs 

(x*) 3 
i-j.;C.i j 

r 

In the case of discrete layers with constant properties in 

the interval (x,x+h) one can write 

where 

(3.49) 

and (3.47) can be integrated to f i e ld  
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T(x&,I,J) = exp[Wt(x,I,J)h T(x,I,J) + 1 

with relatin emw errtlmta 

where the particle state indices have been suppressed for  clari ty.  

Because the uncollided component of the transmission, Tu, 

eventually becomes negigible with respect t o  the scattered component, 

T, a t  large thicknesses the transmission equation (3.50) tends to  

become simply 

T(x+h,I, J) = exp[wt(Y,I, Jb] T(x.1, J) (3.52) 

tha t  is, the stabilizing effect of the analytically integrated t e r m  

decreases as the attenuation increases. 

A large mount of analytic and experimental effor t  was eqended 

on the question of the numerical s tab i l i ty  of these approximations. 

The results may be summed up quite simply. 

The numerical solution of the reflection equation is stable for 

a l l  s tep sizes i n  the range of interest  provided that the refleckion 

calculation is terminated and the reflection s e t  t o  a constant value fo r  

the remainder of the region when the derivative of the reflectLon with 

respect to the slab thickness x becomes less  than 0.001 to 0,0001. 

This is  n o t r e s t r k t i v e  since such a cutoff is highly desirable to 

-r---. Q M d  cp ~ ~ - p ~ ~ = ~ ~ Q ~ .  
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The numerical solution o f  the transmission equation i s  unstable 

for  step s h e s  larger than a quantity that i s  of the same order of 

magnitude as the part ia l  derivative of the right-hand-side of the 

differential equation ( 3 * ~ )  with respect to the transmission variable. 

d9 W w u  Of -8 th.t h 8  kwn d -08Sfhlly rrf b0 

obWaad 

angalar hkagratiens 

cross section used i n  the problem. 

dividing the nnul le8t  direation cosine used h tho 

the largeat value of the totaJ. maerasoopie 

Since larger step sizes can be allawed i n  the numerical solution 

of the reflection equation than for  the transmission, a d  the transmis- 

sion equatuon i s  much simpler to evaluate for  a constant reflection, it 

was f o d  advantageous to use separate step sizes for  the reflection and 

trsnsmissian equations. 

some integral multiple of the transmission step siee if the stepwise 

emr estimate for the reflection was smaller than the error estimate 

fo r  the transmission or  i f  the transmission step sine wae restricted to 

a smsller value because of t h e  s t ab i l i t y  l i m i t .  

The reflection step siee was allowed to assume 

Equations (3.42) and ( 3 . 9 )  for  the stepwise error estimates 

show that the step s i ze  should be adjusted in proportion to the square 

root of the ra t io  of the desired stepwSse error cri terion to the  estimated 

stepwise error. 

t o  elinrinnte o r  strongly damp any tendency to overshoot and oscil late 

about the desired step size.  

In  practice it was found better t o  use the  t h i r d  mot  
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Mscussion 

Successful numerical solutions of the reflection and tranrsmission 

equations were obtained by all four of the methods described as well as 

a f e w  other variations not described here. 

tee slew b allow mllsUc energy dependant problems t0 be 8 8 ~ v d  5n 8 

rea8omble length of time. 

in orbr to take dvantage of the pQsie8 of thfs 

Most of the solutions were 

The exptment3al approxbmt i~  osbm inkdud  

problem and 

proved to be quite useful. 

The first computer pPogram used the Runge-Kutta method and was 

written i n  the FORTRAN programming language. 

in the MAD progra,xaming language and designed for  use w i t h  the M. I. T. 

t ime sharing system as well as the normal IBM 7094 batch processing. 

One version of the HAD program using the Adam8 method used FORTRAN double 

preoision subroutines i n  an effort t o  reduce the problem of nuaDerica1 

ins tab i l i ty  encountered with this method. 

successful and the method was abandoned. 

Later programs ware written 

This e f fo r t  was not 

The f ina l  version of the computer program based upon equations 

(3.41) and ( 3 . 3 )  named "Program STAR" where STAR stands for  "Slab 

'bummission and Refleetion" is described i n  Appendix C. 
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CHAPTER Iv 
RESULTS 

Introduction 

Four problems have been selected t0 i l l u s t r a t e  the appliaation of 

the invariant imbedding method. 

increasing complexity. 

to Psonaenergetia partielem with a very spoi .1  scattering l a w ,  

h o l u d d  because an amlytie 8olulAon i s  possible. 

a f i b  shield i n  whioh a l l  particles ham the same energy and the soattaring 

is isotropic in  the laboratory coordinate system. This problem i s  included 

because solutions are available in the astrophysical l i terature  [ Z ,  131. 

The third problem is  a slab shield composed of water with a plane isotropic 

fission source of unit strength located a t  one face. 

converted t o  a point source geometry and compared with the extensive comuta- 

tions published by the Shielding Division of the American Nuclear Society 

The problems are presented i n  order of 

Tho first problam i s  a simple rod moddrestricted 

It is 

The reaond problem is 

The results are 

[14] . The fourth problem i s  a slab shield composed of alternating layers 

of iron and polyethylene with a plane isotropic fission neutron source of 

unit  strength located a t  one face. 

Alen e t  al. [ls] . 
The results are compared with those of 

Finally, the computing time required for these problems 

i s  discussed. 

-' 1L1W - l - - - - - - J - - A  1 1 1 V U I  A Q U W  a-L-AA4-m w w u u & r r g  -n+hnA ---a*-- Fermlta --- --  p-esented in t h i s  chapter 

were obtained from a computer program named STAR which solves the plane 

geometry invariant imbedding equations using the first-order exponential 

approximation described i n  Chapter III. 

de ta i l  i n  Appendix C. 

Program STAR i s  described i n  

The definition of the relative error i n  percent used throughout 

th i s  chapter i s  

(4.1) True Value - Apuroxhate Value xloosg h u e  Value 
where the true value is to bs taken as the  data t o  which the program 

R. E. i n  $ = 

STAR resul t  is being compared unless otherwise noted. 
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Monoener go t i c  particles i n  a thin e. The model for which the 

analytic solution discussed i n  Chapter I1 is  valid can be described as a 

thin rod or wire with source particles incident upon one end and 

constrained t o  move only along the axis of the rod without change i n  

energy. 

p o i w  nluer of the w e  rolutione of the refleation ud trmsada- 

aim quations for thtr model. 

A short computer program nameil AHSOL was writtan t o  obtain 

Analytie and pregram STaR result8 for a rod model psoblem i n  

which the scattering was isotropic and the mean number of secondaries 

per collision, C, was 0.9 are presented i n  Figure 3, Figure 4, Table I, 

and Table If. The results are in terms of the reflection and transmais- 

sion variables used i n  Chapters II and III. 

scalar fluxes for  this problemwith a source of unit  strength located a t  

one end of the rod (3 of source incident upon the rod) would be one-fourth 

of the reflection and transndssion variables presented hem (see Appendix 

B for relations between the reflection and transmission variables and other 

quantities of interest. ) 

The reflected and transmitted 

These results are typical of the behavior of the reflection and 

transmission i n  more complex prablems. 

approaches a constant value i n  a homogeneous region and the diffuse and 

total transmission approach the same exponential attenuation w i t h  increas- 

ing length o r  thickness. 

The reflection asymptotically 

Note that  the relative error i n  the reflection decreases as the 

reflection approaches the a s y q b t i c  value, but that the error i n  the 

transmission accumulates. 

not serious. 

which point the transmission was 2.070E-29 w i t h  1.85% relative error 

compared to  the  analytic solution value of 2.109E-29. 

The accumulated error in the transmission is 

The same problem was continued to a rod length of WO.0 a t  
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TABLE I 

REFEGCT'ION VALUES FOR ROD EaoDEL WITEI 

ISOTROPIC SCATTER AND c = 0.9 

Rod Length %flection From Reflection From Relative Error 
(Hem b e p r t h s )  Arulftie 3olurt;Lon h g r u a  STAR (In hraont) 

0. 
0.25 

0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.50 
4.00 
5.00 

7.00 
8.00 
9.00 
10.00 

L A n  u. vv 

0.  
0.19744 
0.35065 
0.47164 
0.56850 
0.64690 

o.nw4 
0.76361 
0.80721 
0.84346 
0.87374 
0.89911 
0.92043 
0.95355 
0.97722 
1.00651 

1.02990 
1.03416 
1.03643 
1.03763 

0. 
0.19743 
0.35060 
0.47155 
0.56837 
0.64675 
0.71077 
0.76344 
0.80702 
0.84328 

0.87356 
0.89893 
0.92026 
0 . 9 5 9 0  

0.97709 
1 . 00642 

1.03414 
1.03641 
1.03762 

0. 
0.005 
0.014 
0.019 
0.023 
0.023 
0.024 
0.023 
0.023 
0.021 
0.021 
0.020 
0.019 
0.016 
0.013 
0.009 
c. !% 
0.004 
0.002 
0.002 
0.001 
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TABLE I1 

TRANSMISSION VALUES FOR ROD MODEL WITH 
ISOTROPIC SCATTER AND C = 0.9 

0. 

0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.50 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

0. 
0.19560 
0.33892 
0.43970 
0.50676 
0.54763 
0. H 5 0  
0.57434 
0.56911 
0.55590 

0. 53712 
0. s460 
0.48976 
0.4906 
0.38461 
0.29043 
0.21537 
0.15831 
0.11587 
0.084633 
0.06179 

0. 
0.19546 
0.33878 
0.43961 

0.50675 
0.54769 
0.56861 
0.~7450 
0.56930 
0.556l.l 
0.53734 
0.31483 
0.48999 
0.43728 
0.9480 
0.2909 
0.21548 
0.15839 
0.11593 
0.084677 
0.061783 

0. 

0.072 
0.041 
0.021 
0.002 

-0. Qll 
-0 019 
-0,028 

-0. 033 
-0.038 

-0.041 
-0. w 
-0,046 
-0.049 
-0.031 
-0.052 
-0.053 
-0.053 
-0.052 
-0.052 
-0.052 
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Monoenergetic particles i n  an isotropically scatterinq medium. 

The second problem consider8 a slab 8hield composed of some hypothetical 

materiel that  scatters particles isotropically i n  the laboratory 

ta~rdinab system without changing the energy of the particle. 

Bso reflwtson vd~~orr  fer 8-n angular -ups mre ecqamd with 
- 

the namo%bn ralu08 fatml.tad 

s a r y  ta divide the refleetien by four times the oa&m of the e d t  diree- 

tion i n  order to obtain the same reflection variable tabulated by Bellman. 

The relative error between the two sets of values was always less than 

1.5%. 

program STAR results do not generally come out a t  exactly even values of 

the thickness due ta the variable step size feature. 

b l h w i ,  e t  al. [13] . It -8 nece8- 

Most of the difference appeared to be due to the f ac t  that  the 

The X and Y m c t i o n s  defined by Chandrasekhar and tabulated by 

[16] were used to comflte values of the reflection and fxansmis- Xayers 

sion fiom the relations 

where t is the slab thickness i n  mean free paths, u anc v are the exit 

and incident direction cosines respectively, and C i s  the mean number of 

secondaries per collisfon. 

The values of the reflection and transmfssion array elements 

computed by program STAR were within 2% of the values calculated from 

the X and Y functions a t  both 1 and 5 mean free paths. 

values dfffered by much l e s s  than 2$. 

Most of the 

Examination of the resultsshowed 
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t h a t  the larger differences were i n  the smaller V81UOS of the transndssion 

. 

for  which the difference of two nearly equal numbers is requimd i n  the 

calculation of the transmission from the X and Y functions. 

The X and Y function tables were also used to calculate the 

reflected u x i  diff%~ely tsanslldtted emrrenta aowrding to the relations 

and 

&(t) = * p u  /d. = u.v c [T(t,u)X(t,v) = X(t,u)Y(t,v)] (4.5) 
0 0 

where Jo and J, are the reflected and transmitted currents, 

respectively, due to a unit  isotropic source. 

The reflected and transmitted currents were within 0.9 a t  1 

mean free path and wlthln 0 . 6  a t  5 mean f'ree paths. 

The question of how the number of angular groups affects the 

calculated transmission values was checked by running two series of 

problems that  were identical except for the nunbar of angular subdivisions 

employed in program STAR. 

number of angular groups. It is apparent that the particles-whiah are 

incident close to the normal are the most l ikely to  be transmitted and 

that two or three angular groups are adequata for these particles (the 

ndnimm number of angular groups tha t  may be employed without the 

introduotion of adjustable constants i s  two). 

Figure 6 presents the translnitted current for a unit isotropic 

source as a function of the number of angular groups. 

apparent that  two or three angular group are sufficient, particularly 

when it is noted that the attenuation i n  figure 6 amounts to some 15 

Again, it is  
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powers of ten. 

S h c e  program STAR eontSnuou8I.y ad$wts the step sieo to keep the 

esefnated truncation error per step close to an error criterion that is 

an input vwiable to tb prog~am, it is very important to fnvestigate the 

effoet of this emr dhrlog-tipm the orleulatad remlta. Fortunate-, 

88 PigUrs 7 shows, the tSanmlttcKi eurrmt I 8  re’llrtively Insensitive +XI 

the valus of the error d t e r i a n .  The reason for t h i s  ie that  there is 

a limitation on the msxlmum step size imposed by the requArements for  

s tab i l i ty  which apparently prevents the step size from 

growing to the point where serious error is htroduced. 

error criterfon greater than 0.1 were also hvesttgated. 

Values of the 

It was found 

that  the error control procedure began to  f a i l  fo r  values much larger 

than 0.1. 

The question of how small changes or uncertainties i n  the  input 

data affect  the calculated transmfssion values was ftlvestigatod by 

ruplnfng a series of problems with systematic variations fn the value of 

the mean number of secondaries per collisfon, C, and fi the error 

- -~&--a--  m~.- - r r w l + r  n-- swmms&srA s_? TEhIrr ITf_ 
Y I A W ~ I V U .  4-r & W W . L I -  ------- 

The effect of the change in the e m r  criterion varies Wpth  the 

value of C, bebg a b u t  0.1 to o.& a t  ~ 4 . 5 ,  4 to  5% a t  cd.9, and 

about 16% a t  ~ 4 . 9 9 .  

The effect  of changes in the value of C may be described more 

easily in terns of the changes in the quanftity ( 1  - C). A change of 

1% in (1 - C )  leads t o  a change of 7 to 9% i n  the transmftted current. 

It should be noted that a 1% change in ( 1  - C) near C=0.99 arpounts to 

only a 0.01% change fi the value of C i t s e l f ,  so that  this  type of 
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TABLE 111 

BWECT OF CUHGES IN C AND THE ERROR CRI!E3lIOfl 

(THREE ANGULAR GROUPS USED) 

Hean Number Slab Reflected Transmitted 

h r  (&at3 -0 Path81 ( B - W  
Of Secoadsrios &or T h i C k n O S S  C u r r e y t  currep 

0.9 0.1 40.09 -. 119506 1.19l.E-10 
1 . 29E-10 0.9 0.01 40.09 -. ll9500 

0. a s  0.1 40.09 -.119046 1~089E-10 
0.8- 0.01 40.09 - . l l9Wl 1.1y3ELlO 

0.99 0.1 100.08 -. 19829 2.129E-09 
0.99 0.01 100.08 - . 198467 2.537E-09 
0.9899 0.1 100.08 - . 1 9 a o ~  1.97S-09 
0.9899 0.01 100.08 - . 198248 2.349-w 
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problem wi l l  be extremely sensitive to small changes i n  the input data 

when the absorption in 8 m d . l  and C i s  close to unity. 

PoLvenoraetic neutrons i n  water. The third problem i s  a much 

more rea l i s t ic  problem in o c h  energy and direction dependent cross 

tmtidar are mod. R.fi.otian d tnnnairuton nl-r mly 0-M 

for m h n s  ineldent upon a slab shield oanrposed of Wqr? 

The cms8 seotions for  neutron interaction8 with #ab- were taksn 

from either the report on moments method calculations i n  water by Aronson 

e t  al.,[17] or from the cross sections prepared 

Shielding Mvision of the American Nuclear Society (hereafter r e f e d  

to as  the S. D. of the A. N. S.) [18] . This microscopic neutron 

cross section data was then converted into the desired form for  input to 

program STAR (see Appendices A and D for details). 

Goldstein for  the 

The neutron transmission values were converted into neutron 

fluxes and doses due to a u n i t  isotropic Fission source as  part of the 

output section of program STAR (see Appendix B f o r  details). 

and an occasional f lux  versus energy plot were then converted by hand to  

The doses 

pni nt sniwee  anm me+.^- 

Program STAR problems were run with various sets of input data 

differing i n  the number of energy and angular groups and the upper and 

lower energy limits. 

and had 8 energy groups over 0.33 to 18.0 M e v  and 2 angular groups. 

angular groups is equivalent to a double PI treatment of the angular 

dependence because the number of  angular groups refers t o  the order of 

Gaussian quadrature used in  separate angular integrations over 0 to 1 

and -1 to 0 i n  the direction cosine. This equivalence has been shown 

The flrst problem was based upon the Aronson data 

Two 



by Gast [19] who c i tes  work showing better results for  double P1 

approx i~ t ions  than for  ordinary P3 approximations. 

By what now appears ta have been a fortuitous event of a very 

l o w  probability of occurrmce, the calcdated dose rat8s for tho eight 

energy -up pavbhm r#n . k e r t  tb. u9, a6 &ow reparted by 

h m o a  e t  ul. [17] a t  dirtancerr of =re than 30 081 from the source 

(the mum within 8 b u t  l@ whiah 18 very good in this work d not mparrble 

on the usual semilog plots of the dose ra te  versus the distance from the 

source) . 
Subsequent case8 wwe run with fewer energy group0 because the 

eight energy group problem could not be run to as  great a thickness as  

desired within the flve minute l i m i t  for  ordinary problems a t  the I¶. I. T. 

aomputation center. 

A series of three problams were run to check the effect  of 

changing the number of energy and a n w a r  groups. 

groups w i t h  four energy groups over 0.1 to 10.0 &v and two angular 

greups with five energy groups over 0.1 to 10.0 Mev based on the 

Goldstein cross section data were used. 

Figure 8. 

Two and three angular 

The results are presented i n  

One MY conclude that the dose ra te  i s  more sensitive to the 

number of energy groups than to the number of angular groups and that 

two angular groups are sufflcient to  reduce the uncertainty due to the 

angular approxination to less  than the uncertainty due to the energy 

s p p r o h t i o n  i n  this  problem. 

A final mtsr problem was run With six energy groups over 0.33 

to 14.1 Mev and two angular groups based on the older cross seation 

&it& of L-cnac;; et =I. A bssis chsngn tn tha preparation of th@ input 
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data to program STAE was made i n  this  problem. 

The 4,5, and 8 energy group input data used i n  the previous water 

problems was prepared by averaging microscopic cross section data 

ta)rplrtd a t  16 or more oqrully spaced incrementa i n  the bthargy  

&b%o a = I~(E/B~). A .garit n= wlbighting ibrre*n WII rprrd. -  

The aix onorgy group iaput data VIS prepared rrOa mluroroopie 

CmdS sectlens evaluated a t  precisely the Six incident energies used in 

the Gaussian quadrature energyintegrations. 

preparing the input data since it is consistent with the numerical 

integration scheme and avoids the problem of choosing the flux weighting 

function. 

this method and some judgment must be exercised in picking representative 

points for the particular problem a t  hand or i n  smoothing out the cross 

section data. 

must occur when only a few energy groups are used. 

desired upper and lower energy limits were chosen and the cross sections 

evaluated a t  the Gaussian quadrature points without approximation because 

by good fortune the six points were a l l  f a i r ly  representative of th6 

overall cross sectSon behavior, 

This is  a better method of 

Resonances in  the cross sections are an obvious problem with 

I n  any case, some rpproldmsltion with respect to resonances 

In  t h i s  case the 

The results of the t uo  angular group, four and six energy group 

invariant imbedding method problems are compared with other transport 

theory results in Figures 9 and 10. The solutions designated C9, M1, 

T5, T5', and T8 were reported by the S. D. of the A. PI. S. 

attenuation i n  plane source gaometry is s l ight ly  over 10 powers of ten a t  

the maxhnm thiakness of WO cm of water. 

scale factor applied to remove most of the spat ia l  dependence and 

[14] . The 

Figure 10 has an exponential 
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accentuate the differences between the various solutions. 

"he Monte Carlo method solution M1 and the moments method solutions 

T5' and T8 wem jdged  by t h e  S. D. of the A. N. S. to be t h e  mast reliable 

mthedr for th is  problem. The four and s f  energy group invariant 

l m b d d h g  re8ulta bracket thew SalutAom wlth the 8- energy -up r e a t  

beim ala-r over most of the range. 

The older moss section set of Aronson was used for the six group 

resul t  whereas the newer cross sections prepared ky Goldstein for the 

A. N. S. problems were used for the four group problem and for  the M1, 

M5' and T8 solutions. 

for  the six energy group problem was to try to reproduce as  closely as 

possible the results of Aronson. It was found, however, that  i n  spite 

of the older cross seotions, the calculated resul t  came closer to the 

l a t e r  moments method solutions published by the A. N. S. 

The reason for using the older cross section s e t  

Neutron energy spectra for the s ix  energy group problem a t  

10, 90, and 180 c m  *om the source are presented i n  Figure 11 as well as 

a comparison with the spectrum a t  90 cm f r o m  the moments method results 

of Aronson irtj . me momenix met'nai spcirw a s  i i v r i i s l i s d  t= th= 

same dose ra te  t o  f ac i l i t i a t e  the comparison of the spectral shapes. 

The agreement i n  shape i s  very good, particularly when it is realized 

that  a six energy group computation is  being compared with a forty 

energy group computation. 

In  summary, it  appears that  program STAR yields acceptable results 

compared to other methods for deep penetration calculations i n  neutron 

shields made of water. 

A. N. S. solutions include several varieties of the DSN and DTK codes that 

Although not shown i n  Figures 9 and 10, the 



FIGURE 1 1 
NEUTRON FLUX VERSUS ENERGY AND DISTANCE 

FROM A P O I N T  ISOTROPIC F I S S I O N  SOURCE I N  WATER 
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gave very poor results analogous to diffusion theory ( 2  to 3 orders of 

magnitude or more i n  error a t  210 om thickness). 

due to  an inadequate treatment of the anisotropic scattering in water. 

By contrast the invariant imbedding method STAR does not seem to have 

d t f f l d . t S  i n  representing the angular dependenoe of the ero88 sections 

This i s  apparently 

adeqwtaly. 

Polmnernetic neutrons i n  a heterogeneous iron/palmthylene 

The fourth problem is designed to show the ab i l i ty  of the -0 shield 

invariant imbedding method to handle heterogeneous problems. 

composed of 4 inches of iron followed by 6 inches of polyethylene 

followed by 1 inch of iron is considered. 

A shield 

An additional problem was 

run for  a homogeneous polyethylene slab up to 12 inches thick a s  a 

reference. A unit isotropic fission neutron source is used. 

Two angular groups and both four and five energy groups over 0.1 

to 10.0 MeV were used. The cross section data was taken from the se t  

prepared by Goldstein for the A. N. S. shielding problems discussed i n  

connection with the third problem. 

The results are presented i n  Table IV and Figure 12 along with 

the Monte Carlo method results of Allen e t  al. [15] converted to a unit  

isotropic fission source input. 

was necessary because the polyethylene cross sections m r e  prepared f o r  

A correction i n  the polyethylene results 

a density of 0.907 gm/cm 3 whereas the results of Allen e t  aL turned 

out to be for  a polyethylene density of 0.97. The correction was made by 

increasing the polyethylene thiokness by a factor of 1.07, i . e .  the 

6 inches of polythylene was increased t o  6.43 inches and t h e  12 inches 

of polyethylene was increased to 12.8 inches. 



TABLE IV 

NEUTRON DOSE TRAMSMISSION FACTORS FOR A UNIT ISOTROPIC 

FISSION SOupcE: INCIDENT UPON IRON/POLPETKYLENE SHIELDS 

%WW#88hl Factor 

Shfdd 4 Group STAR 5 Group STAR b n t e  Carla 

12“ Polyethylene 

Wi 1mn/6” P O ~ J ~ ~ ~ I @ ~ X W /  

1“ Iron 

0.0018 

0,0096 

0,0014 

0.0069 
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The five energy group results compare better than the four 

The agreement I s  within energy group results as one would expgot. 

8% for the five energy group problem. 

accllrcrey of the conversion of the monoenergetfc MmtS Carlo method 

remitto of Allen e t  aLt0 the flrsian ~ o u r w  input. 

This i s  well within the 

Mscmssion. The results of th i s  chapter indioate that the most 

useful applications of the invariant imbedding method will probably be 

in problems i n  which the moments method does not apply because of 

heterogeneity and i n  which the attenuation is large enough to  make the  

Monte Carlo method unattractive on aecount of excessive computing t i m e  

and i n  which t h e  scattering is  sufficiently anisotropic to make the 

application of the usual varieties of DSN or DTK type transport theory 

codes suspect. 

The computing time required for the various problems is presented 

i n  Table V. 

the variation i n  computing time with  the number of energy and angle groups 

1-n t-hfiush the program was not as  f a s t  as the f ina l  version (note that  

the error criterion i s  larger far these problems). 

The three problems run an 12/27/65 were included to i l lus t ra te  

The variable step siae feature of program STAR works very well. 

The variation of the reflection and transmission step sizes with shield 

thickness for the five energy group calculation i n  the three region 

iron/polyethylene shield is shown i n  Figure 13. The step size gradually 

increases i n  a region and i s  automatically adjusted t o  a smaller size a t  

the start of t he  next region. 

larger i n  going from the iron into the polyethylene than vice versa a s  

Note that the transient change i s  much 



TABU V 

OOWPUTIEJG TIME REQUIRED BY INVARIANT 

IMBEDDING PROBLEMS 

FTUBLEMMAXIMWH " B E R O F  NUMBER OF ERROR MAXIMUM DATE TIMEIN 
NUMBER TBICEISESS ENERGY GROUPS ANGULAR GROUPS CRITERION STEP SIZE RUN MINUTES 

I 

11 

I11 

xv 

2lo. 

6. 

210. 

210. 

210. 

210 . 
27.94 

27.94 

1. m-05 

1.0~03 

1.OE-02 

1.OE-01 

1.OE-01 

1.0E-01 

1.OE-02 

1.oE-02 

T R 

1. 5. 1/14/66 

.0254 .125 1/15/66 

.465 2.325 1/16/66 

.44 100. 12/27/65 

.44 100. 12/27/65 

.wC 100. 12/27/65 

.68 3.40 1/16/66 

.68 3.40 1/17/66 

0.62 

1,68 

4.93 

4.19 

2.48 

1.59 

1.52 

1.75 
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one would expect since, because of its hydrogen content, the polyethylene 

i s  less  transparent b neutrons than iron. 

The effect  on the required computer time of the variable step 

sise and the setting of the reflection to a constant value when the 

dertvat%ve af tho reflection with r e s p t  to shield thioknesr bemame8 

less thrn 0,001 18 dramatic. 

on 1/16/66, the first 126 eas required 1.26 min, or 0.106 adn/cm. 

this  point the reflection was set equal to a constant value and the next 

17.4 cm required 0.24 min for a ra te  of 0.0138 min/cm which is over 

seven times faster  than the i n i t i a l  rate. The final rate for t h i s  

problem was 0.0131 ndn/cm for thicknesses of over 30 c m  (plus 4.4 

sec for each printad point). 

In the six energy group mter problem run 

A t  

The 1.7 min required for the seven angular group monoenergetic 

problem run on 1/15/66 compares quite favorably with the approximately 

10  min per five angular group monaenergetic problem reported by 

Beissner [4] . 
continue to the same 10 mfp thickness used by Beissner but experiments 

An additional 0.5 d n  would have been required to 

with a variable number of angular groups in the monoenergetic problem 

have indicated that  program STAR is about 3.5 times faster  for f ive  

angular groups as  compared to seven angular groups. 

about 0.6 min would be required for the program STAR problem comparable 

This means that 

to the 10 min problem of Beissner. 

A f t e r  taking into account the difference i n  speed between the 

computers used (I€jM-7094 versus IBL7090), it i s  clear that  program 

STAR is  considerably faster even for this thin shield problem i n  which 

the high speed transmission only calculation of program STAR was not 

msnd hncanse the mfl-ectian does not c1oseI.y approach its asymptotic 
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value until nearly the end of the computation. 

Noting that the number o f  operations required to evaluate the 

nonlinear double sum term increases as the fourth power of the produot of 

the number of energy groups and the number of angular groups, one may 

est.laata (not rtated by Belsmer) that the energy dependent oaangrrbtions 

with six energy groups and 3 ragalrr groups p e r f e d  by Beismor L6I 

must have reqtlirod several burs of oaqxiter t-. 

why no further energy dependent results have been reported by Beissner. 

This afay @Lain 
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CHAPTER v 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WDRK 

In plane geometry shielding problems i n  which the shield is very 

heterogeneous, Le. ,  composed of many layers of differing materials, the 

lnvarhat l m a n g  method 8 0 w  to oifer  elear aut gdvantagwover other 

mthotla baruse the oomptw fast meimry reqtdmment IS net affwted lg 

tho d m v  of heterogeneity of the problem. 

neud ta specif'y a mesh spaaing for the spatial variable and the memory 

requirement i s  not a function of the nmber of spatial  points considered. 

In  its present form, the invariant imbeddfng method also seems t o  

In  addition, there is no 

be the method of choice i n  plane geometry shielding problems i n  which 

the following three conditions are satisfied: 

ous so that the moments method does not apply, 

sufficiently large so that  the Monte Carlo method requires an excessive 

amount of computing time and, 

anisotropic so that the application of the usual varieties of the SIG 

or  DBN type transport theory codes i s  suspeet. 

1) the shield i s  heterogene- 

2) the attenuation i s  

3) the scattering is  sufficiently 

Double Gaussian quadrature a t  a t o t a l  of 2n points where n is 

two or three was shown t o  w aaequaix to approximate tine anguiar ciap~d- 

once even i n  the water penetration problem i n  which DSN type codes 

incorporating a l inear anisotropic scattering correction failed badly, 

The success of the low order angular approximations i s  attributed i n  

part ta the separation of the transmitted flux into scattered and 

unscattered components and i n  part to the use of the double Gausbian 

quadrature. 

The use of Gaussian quadrature to approxbuate the energy 

dependence worked well and reasonable results were obtained with four 

79 
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to six energy groups i n  the fast  neutron region. 

to approximate the energy dependence cannot, howewer, be regarded as 

settled i n  the same sense that it appears that  double Gaussian quadrature 

is a clearly superior method of treating the angular dependence. 

serfow shortmming of the present methad is  that thermal and opb- 

th.nrl neuhnr are ignored. 

batter to rewrite kh8 h a l e  refleetIan a d  transmission equatians in 

term of t h e  lethargy variable and to approximate the lethargy depend- 

ence. 

The problem of how best 

One 

For t b i s  masen it would probably be 

A very simple numerical approximation which is  exact f o r  an 

exponential Function was found to work very well for the numerical 

solution of the reflection and transmission equations. 

features were found useful i n  accelerating the solution of the plane 

geometry reflection and transmission equations: 1 )  a variable step size 

which is automatically adjusted to give a desired value for  the estimated 

relative tSuncation error per step regardless of the material properties 

of the region, 

sion calculations allowing the more d i f f icu l t  reflection calcalation t o  

be performed l e s s  often and, 3) 

calculation when the reflectfan closely approaches i ts  asymptotic 

value. 

The following 

2) a different step silte for the reflection and transmis- 

the termination of the reflection 

It was found necessary to lidt the maximum allowable step siee 

in the ~anslniss ion calculalAon on account of numerical instabi l i ty  a t  

large step sizes. 

in the outer portions of a thick shield layer, the step size i n  the 

transmission equation solution is  limited by the numerical s tab i l i ty  

l imf t  to  step sizes muoh smaller than wodd otherwise be allowed by 

This places a l i m i t  on the speed of the solution since 



. I. 

81 
stepwise error consideratiopb . 

Fortunately, the transmission equation solution when 

value is so tion is assumed ta have attained its assmptotfd 

the reflec- 

much faster 

than t he  combined reflection and transmission calculations a t  the 

Of b 8hid.d b p r  thrt thfS lhit hr8 tM3t bO0m b0 r O S b i O ~ V 0  

In paOk%ee. Eommr, it t p l d  b e - m h  btter if b methad of avoiding 

the mtm&ebl i!ut.bSlity oould be devised &&oh would s t i l l  allow 

l r rge etsp siaes with small error urd further work in t h i s  area is 

SUggesW. 

Beissner [ r C ]  suggested tha t  i n  some cases i n  which forward 

scatter is large compared to backward scatter, one might be able to 

neglect the double sum terms in the reflection and transmission equations 

(3.4) and (3.11). 

practical circumstances over most of the range of the reflection and 

transndssion variables, There is, however, a r ea l  incentive to 

investigate some such scheme because whenever the  double sum tenas can 

be neglected, the number oi operations requfred to evaluate the right- 

hand-sides of the differen$ialequations drops from a fourth power to a 

thtrd power ciepenaence upon tne  nunher OT partii;’Eu iitrte~ Gi2 i i i ~ z ; t  ;f 

the aompubr time required for these problems is consumed in these 

evaluations . 

This does not seem to be a very good approximrtion i n  

The-double sum terms can certainly be neglected a t  the first 

s tep and the question is to how to sat  up some criterion for deciding 

for how many more steps they can be negleeted. 

be significant since the step siee is smallest near the origin and a 

substantial fraction of the computer time required for  any given 

problem is consumed i n  advancrlng the solution i n  the region near the 

origin. 

This could turn out t o  
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The combination of some way to eliminate unnecessary evaluations 

of the double sum terms coupled with a numerical solution of the transnds- 

sion equation with a less restrictive s tab i l i ty  limit could potentially 

make the invariant imbedding method the method of choice for a very 

wlde range of plane geometry 8hielding problems. 

lbmlly, there soem fa bo l l t t l e  inaentirr ta apply the 

-ant iBsbedding n8thad t0 Criticality ealCtll.%l@n8 

There are easier methods of obtaining Crit icali ty estimates i n  plane 

geometry without becoming so involved i n  the detai ls  of the flux 

distributions. 

pbm geometq, 

There i s  a possibility, however, that  the invariant imbedding 

method may have a useful application t o  c r i t i ca l i t y  calculations f o r  r ight  

cireular cylindrical shaps. 

interest  the idea w i l l  be discussed i n  some detail.  

imagines that  a cylinder i s  built up from a series of thin discs In  the 

same way that a r ight  ciroular cylinder may be bufl t  up & stacking 

coins and considers the reflection of neutrons From one end of the 

cylinder as the height of the cylinder varies. A very complicated 

reflection equation may be derived by following the approach given by 

Chandrasekhar [ZO]  . For purposes of i l lustration, a reflection equa- 

tion is  given for the greatly simplWied case i n  which it i s  assumed that  

the properties of the cylinder vary only i n  the axial direction, that the 

reflection i s  not dependent upon the azimuthal position i n  the cylinder, 

and that  the neutrons a l l  have a common velocity. 

Because t h i s  case i s  of great praetical 

Basically, one 

Le t  e andp represent the d a l  and radial  position, respectively, 

and l e t p r e p r e s e n t  the cosine of the angle betmen the neubon direction 

and the +r, direction. The reflection of a unit  pencil of neubons 
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incident a t  the center of the end surface of a r ight  circular cylinder of 

radius Ro and height e is given by the equation 

a 2y R(s,O:-l,l) = a(a)g(t:-1,1) - 2c(%)R(e,0:-191) +IC(%) 

with the familiar i n i t i a l  condition 

€hat is, the reflection i s  zero a t  zero thickness (cylinder height i n  

this asse) for  a l l  rad i i  and direction cosines. 

Bote that the reflection equation is  similar in many mys to  

the plane geometry reflection equation except that  it i s  now a part ia l  

different ia l  equation with a t r iple  integral for the l a s t  term instead 

of the double integral i n  the plane geometry ease, the additional 

integration being over the radial coordinate. 

For c r i t i ca l i t y  one desires to  find out the value of e for 

which the reflection diverges toward infinity. 

tion i t s e l f  is not important and any convenient type of incident source 

may be used to obtain an oquation for the reflection. 

simple form of the above equation for the reflection i s  partly a 

consequence of a judicious choice of the incident source so that several 

terms i n  the more general reflectfon equation vanish. 

equation shows clearly, however, the general nature of invariant 

The value of the reflec- 

The relatively 

This simplified 
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It is hoped that imbedding equation in this cylindrical geometry case. 

this discussion will stimtilate Purther investigation to see i f  a practical 

procedure can be developod applylng the invariant imbedding method in 

this special aaso of cylindrfcal geometry. 

w, th@ -t hbdu XWthOd h 6  b0.n Sbom 

*eld aaof'ul rostiltu in 8 praotiaal long* of firn in eertrin erne8 of 

prretieal intarest in neutron shielding. !Che areas in which hxraer 

work ha8 been sagge8t.d inclltxdo: 1) transformation to the lethargy 

variable, 2) 

for the transmission oquation, 3) 

of the nonlinear term, and 4) tho possible application of the invariant 

hbodding method to the calculation of the critical height for a right- 

circular cylinder. 

investigation of more stable numerical solution techniques 

elimination of unnecessary evaluations 
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APPENDIX A 

INPUT DATA PREPARATION 

In t roduct ion  
The numerical so lu t ion  of t h e  plane geometry r e f l e c t i o n  

a n d  transmission equations r e q u i r e s  t h e  fol lowing input data: 
1) the a b s c i s s a s  a n d  weights f o r  t h e  i n t e g r a t t o n s  over energy, 
2) the a b s c i s s a s  and weights f o r  the i n t e g r a t i o n s  over the 
p a r t i c l e  d i r e c t i o n  cosines ,  3 )  t h e  average value of the t o t a l  
macroscopic c r o s s  sec t ion  f o r  each energy group, 4) t he  
average value of  t he  mean number of  secondaries  per c o l l i s i o n  
f o r  each energy group, and 5)  t h e  p r o b a b i l i t y  of  t r a n s f e r  
f rom one p a r t i c l e  s t a t e  t o  another  p a r t i c l e  s t a t e  as a r e s u l t  
o f  a c o l l i s i o n .  

The fol lowing sec t ions  a r e  r e s t r i c t e d  t o  the prepara t ion  
o f  input  d a t a  f o r  neutron t r a n s p o r t  problems only,  but similar 
procedures could be used t o  generate  input  data f o r  gamma ray  
t r a n s p o r t  problems . 
a l l  o f  the  informatron concerning the angular  dependence of 
t h e  s c a t t e r i n g  processes  i n  the  s c a t t e r i n g  medium. A t  the  
ene rg ie s  of i n t e r e s t  i n  nuclear  r e a c t o r  s h i e l d i n g  problems, 
t h e  i n t e r a c t i o n s  of  neutron w i t h  n u c l e i  which must be 

The s t a t e - t o - s t a t e  t r a n s f e r  p r o b a b i l i t y  matr ix  con ta ins  

considered a r e  : 1) e l a s t i c  s c a t t e r i n g ,  2 j  i n e l a s t i c  scai-  
t e r i n g ,  3 )  n,2n r eac t ions ,  and 4)  f i s s i o n  r eac t ions .  Only 
t h e  e l a s t i c  s c a t t e r i n g  process con t r ibu te s  an an i so t rop ic  
component t o  t h e  s t a t e - t o - s t a t e  t r a n s f e r  p robab i l i t y  s i n c e  
the  o t h e r  processes  may be assumed t o  r e s u l t  In an i s o t r o p i c  
angular  d i s t r i b u t i o n  o f  s ca t t e r ed  neutrons i n  the l abora to ry  
coord ina te  system. 

f o r  g e n e r a l i t y .  In a s h i e l d ,  f i s s i o n a b l e  m a t e r i a l  w i l l  no t  
o r d i n a r i l y  be present .  If t h e r e  i s  no f i s s i o n a b l e  m a t e r i a l ,  
neut rons  can n o t  increase i n  energy a f t e r  e n t e r i n g  t h e  
s h i e l d ,  and those elements of t h e  s t a t e - t o - s t a t e  t r a n s f e r  
probably mat r ix  f o r  which the  neutron energy would 

The f i s s i o n  process is included i n  t h i s  sec t ion  only 

85 
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increase are zero and do not have to be calculated. 

(program CSDP) listed in Appendix D solves the equations of 
this chapter for a maximum of 5 nuclides tabulated at a 
maximum of 100 energy points and provides punched output 
in a suitable format for input to the computer program 
(program STAR) f o r  the solution of the plane geometr7 
reflection and transmlsslon equationa listed in Appendix 0 .  

The cross section data preparation computer program 

Abscissas and WeiRhts for Numerical Integrations 
Any desired numerical integration formula may be used 

to compute the abscissas and weights that are required for 
the numerical solution of the reflection and transmission 
equations. 
the integrations over energy a8 for the integrations over 
particle direction cosines. 

In this investigation, Gaussian quadrature was used for 
both integrations. The abscissas and weights for the energy 
integrations were obtained from 

It is not necessary to use the same formula for 

and W are the aDsc1ssas an6 w e i @ t S  k ,n k,n where ETA 
tabulated by Lowan, Davids, and Levenson k2]  for Gaussian 
quadrature at n points in the interval (-l,l), EL1 is the 
lower limit of the lowest energy group, and EHn is the upper 
limit of the highest energy group. 

over particle direction cocjines were obtained from 
Similarly, the abscissas and weights for integrations 

MUj  = ( 1  + ETA )/2 3 ,n . 
( 3 )  

(4)  
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T o t a l  C r o s s  Sec t ion  
The macroscopic t o t a l  cross  s e c t i o n  for each energy group, 
TOSks was obtained from 

TUSk = 

where ADi i s  the  atom densi ty  of  t he  i t h  nuc l ide ,  
number o f  nuc l ides ,  @(E) i s  t h e  neutron f l u x  as a 

( 5 )  

BB i s  the  
func t ion  

o f  energy, and d t , l ( E )  is the  microscopic t o t a l  crorJs 
s e c t i o n  o f  t h e  i t h  nucl ide a8 a funct ion  o f  energy. 

t he  energy po in t s  a t  which 6 ( E )  i s  tabula ted  a r e  n o t  
always uniformly spaced and cannot be chosen i n  advance. 

The t r apezo ida l  r u l e  was used t o  evaluate  (5 )  because 

t , i  

Mean Number of Secondaries per  Co l l i s ion  
The mean number o f  secondaries per c o l l i s i o n  for t h e  

i t h  nuc l ide  as a funct ion o f  energy, c i (E) ,  is 

and t h e  mean number of secondaries per c o l l i s i o n  f o r  the  k t h  
energy group, C k ,  i s  

I= 1 J ELk 
- 

‘k - 
ADt 
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wherey (E)  i s  t h e  mean number of neutrons per f i s s i o n  f o r  
t he  i t h  nuc l ide  as a funct ion of energy, d f , i ( E )  l e  the  
microscopic f i s s i o n  cross s e c t i o n ,  d , , i ( E )  is the micro- 
scopic  s c a t t e r i n g  c r o s s  sec t ion (  inc ludes  b o t h  e l a s t i c  and 

i n e l a s t i c  s c a t t e r i n g ) ,  d n a  , i 
a,& r e a c t i o n  cram m e t l o n ,  and ADt is the total atom 

( E )  i s  t h e  microscopic 

d0n8Itym i 

The t r a p e z e i d a l  rule was used t o  evaluate (7). 

.. . 
6 

State- to-State  Transfer P r o b a b i l i t z  
Let P ( E k , E m ; Q j ,  nl) be the i  p r o b a b i l i t y  of t r a n s f e r  

o f  a neutron from energy Ek and d i r e c t i o n  
energy about Em and i n t o  u n i t  s o l i d  angle  about n1 as a 
r e s u l t  o f  a c o l l i s i o n  w i t h  t he  normalizat ion 

i n t o  u n i t  3 

P(Eg,E,;Rj,Q1) = 1 ( 8 )  

The sum o f  t he  f i s s i o n ,  i n e l a s t i c ,  and n,2n con t r ibu t ions  
t o  the  t r a n s f e r  p robab i l i t y  i s  

.. 
i= 1 

where gf i(Ek,Em) is the energy spectrum of neutrons 
in a f i s s i o n  r e a c t i o n  caused by a neutron of  energy Ek 
i nc iden t  upon t h e  i t h  type  o f  nucleus,  gin,i ( E  BE ,Em) is  t h e  
energy spectrum o f  i n e l a s t i c a l l y  s c a t t e r e d  neut rons ,  and 

%2n,i\'k' m 

9 

I *  3 ) is +.ha errnrgy spectrum of neutrons emitted in 

/ 

emitted 
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t he  n,2n r eac t ion .  

zatfon condi t ions  
The va r ious  energy s p e c t r a  a r e  sub jec t  t o  t he  norml(r1i- 

' 0  

that i s ,  t h e  f i s s i o n  and i n e l a s t i c  energy spec t r a  a r e  normal- 
i zed  t o  u n i t y  a n d  t h e  n,2n r e a c t i o n  energy spectrum is  norm- 
a l i z e d  t o  two in orde r  t o  make maximum use of e x i s t i n g  d a t a .  

Let the  d i f f e r e n t i a l  e l a s t i c  s c a t t e r i n g  cross s e c t i o n  
i n  t he  center-of-mass (C.M.) qoordinate system be represented  
by an expansion i n  a f l n l t e  series of Legenue  polynomials 
6f t h e  form 

where ec = coa" & 

o f  energy f o r  each nuc l ide ,  t he  P1( & )  a r e  Legendre poly- 
nomials of o rde r  1, and 

is the d e f l e c t i o n  angle  i n  t h e  C.M. 
t -  \ ~~= ~ ~ ~ f f : ~ : ~ ~ t ;  b - L - * l - + - d  n a  @ w n m + 4 n n e  system, i h e  i ? l y i l ~ k l  V C I Y U I U V ~ Y  U Y  I--"---., 

27r I 
d e , i ( E k )  = k d j y c  de; , i (Eky /%I 

I f  0 = cos'lp i s  t h e  d e f l e c t i o n  angle  i n  the  l abora to ry  

(14 )  

(L . )  coord ina te  system, d Q  = 
o f  s o l i d  ang le  i n  the  L. system, and d n c  = d h  d@ is  an 
element of s o l i d  angle  i n  t h e  C.M. system, then 

d p d @ i s  a d i f f e r e n t i a l  element 

(15) 



or 

The elastic scatter contribution to the transfer probab- 
ility is 

and where Ai is the mass number of the target nucleus and the 
Dirac delta function is neceesary to conserve energy (cf. 

r .  

Weinberg and Wigner 1231 ) *  Dlfferentlafion of (19) gives 

The transfer probability for azimuthally symmetric 
scattering (the usual case) I s  obtained by integrating (9) 
and (17) over all possible values of PI. Defining 
one obtains 

8 -  n e \  $ = $I = $,.,and using the symmetry of cos$$ in { U , C ~ I  1 ,  
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where p, &, and  d&/w are a l l  - f u n c t i o n s  of 6. 
Define t h e  s t a t e - to - s t a t e  -%&iifer probabi la ty ,  

TP(SElYm;SIj r k )  , as the  p robab i l i t y  that a neutron will be 
( i n c i d e n t  d i r e c t i o n  t r a n s f e r r e d  from inc iden t  s t a t e  S I  

cosine i n  d i r e c t i o n  cosine group j and inc iden t  energy in 
energy group k) i n t o  a d i f f e r e n t i a l  d i r e c t i o n  cosine range and 
i n t o  a d i f f e r e n t i a l  energy range in e x i t  s t a t e  SE 
d i r e c t i o n  cosine in d i rec t ion  cosine group 1 and e x i t  energy 
in energy group m ) .  The s t a t e - to - s t a t e  t r a n s f e r  p robab i l i t y  
i s  obtained by averaging (21 )  over the inc iden t  and e x i t  

3 Yk 

( e x i t  14 

d i r e c t i o n s  and energ ies  i n  t h e  fol lowing manner 

f E% 

where 
energy and d i r e c t i o n  dependent neutron f l u x ,  if that f l u x  
were known. 

not depend on d i rec t ion .  The con t r ibu t ion  t o  the  s t a t e -  
t o - s t a t e  t r a n s f e r  p robab i l i t y  from these  processes i s  

@ ( E 1 , M U 1 )  i s  a weighting func t ion  that would be t h e  

The fission, i n e l a s t i c ,  and n,2n terms in (21)  do 
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! .. 

where (R(E1 , M U l )  has been assumed t o  depend on El  only and 
where 

(124) 

The con t r ibu t ion  t o  the  s t a t e - to - s t a t e  t r a n s f e r  p r o b a b i l i t y  
f rom t h e  e l a s t i c  s c a t t e r i n g  process is 

where 



r 

1 

I 

L 

MUC = [ " ' Y A W  + MU) - 1 1  / Ai (28) 

(E1,HUC) is given by (13) with % and II, replaced 

One integration in (25) may be car&ed ant analytically 

and de,i 
by El and MUC, respectively. 

by interchanging the order of the integrations over E2 and 
PHI and using the properties of the Dirac delta function in 
(26). The result I s  

l E k 2 1  a P H 1  Pe , 
(30) 

0 therwis e 

ELm 

where 

E' = El 

The rnmalning integrals over the incident energy, E,, 
the incident direction cosine,  MU1, the exit direction cosine, 
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MU2, and the azimuthal angle, PHI, constitute the four-fold 
integration required for each nuclide for each element of the 
elastic scatter contribution to the state-to-state transfer 
probability matrix. 

The trapezoidal rule was used for the integration over 
B, l a  (23) and (25) and f o r  the integration over E2 
(23). Gauesian quadrature was used for  the Integrations 
over MU1,Emp, and PHI in (23). 

Discussion 

for hydrogen. For any nuclide such as hydrogen for which 
elastic scattering may be assumed to be isotropic in the 

in 

The equations of the previous section have special forms 

center-of-mass system, (13) becomes simply 

Setting Aito one in (281, (291, and (31) yields the 
special forms 

- 1  When MU 5 0 

MUC = 

2(MU)'-1 when MU 0 

O when Nu = * 
dMUC 
dMu - =  { 

(33 )  

(34) 
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A u s e f u l  check of t h e  s t a t e - t o - s t a t e  Oransfer p r o b a b i l i t y  

matr ix  may be based on t h e  normalizat ion condi t ion  (8)  i n  the 
d i s c r e t e  form 

NS _. - 

x[TP(SE;SI )  + W(SE+NS;SI)] wMa(SE)WE(SE) = 1 
sEci  (36)  

where BTS I s  the number of p a r t i c l e  states (number of energy 
groups t imes number of angular  groups i n  (0,l) ) and where 
t he  term TP(SE+NS;SI) is  necessary t o  include a l l  poss ib l e  
e x i t  s t a t e s .  By d e f i n i t i o n ,  s t a t e s  1 t o  NS include a l l  
energy groups and a l l  negat ive d i r e c t i o n  cos ines  and s t a t e s  
NS+l t o  2(NS) include a l l  energy groups and a l l  pos i t i ve  
d i r e c t i o n  cosines.  In t h i s  scheme, t h e  p a r t i c l e  d i r e c t i o n  
i s  reversed without change i n  energy group by adding o r  
s u b t r a c t i n g  NS from the s t a t e  index. 

a d d i t i o n a l  component when t h e  lowest energy l i m i t ,  EL1, i s  
g r e a t e r  than zero and energy t r a n s f e r  below t h i s  energy 18 

poss ib l e ,  i s  computed and p r in t ed  under the  heading 
SUMSOS( I ). ..SUMSCS(NS) as a check on t h e  va lues  of t he  t r a n s f e r  
p r o b a b i l i t y  matr ix .  This sum should be u n i t y  and , i n  
p r a c t i c e ,  was found t o  be wi th in  0.5% o f  u n i t y  f o r  hydrogen 
( t n e  worst catje; wL0u 4 izkt k ~ z c k ~  qr_?zc!~.p+l_?rp wen n s e d  

f o r  t h e  i n t e g r a t i o n s  over MU, and MU2 and 8 point  Gaussian 
quadrature  used f o r  t h e  i n t e g r a t i o n  over PHI i n  (25). 

t r a n s f e r  p r o b a b i l i t y  matrix exac t ly  t o  u n i t y  and recomputed 
s t r i c t l y  according t o  ( 3 6 )  without c o r r e c t i o n  f o r  the  lower 
energy l i m i t  t o  show t h e  f r a c t i o n  of  neutrons being t r a n s f e r r e d  
below t h e  lowest energy group. 

The weighting funct ion $(E1,MV,) i n  equation (25) w a s  
assumed t o  be a func t ion  o f  El only. 

The f r a c t i o n  of f i s s i o n  spectrum neutrons emitted i n  
energy group k ,  denoted by FISSg, is a l s o  ca l cu la t ed  and 
puriched out f o r  use in program STAX. 

A sum based upon t h e  lef t -hand-side o f  ( 3 6 ) ,  plus  an  

The check sum i s  then used t o  normalize the  values  of  t he  



APPENDIX B 

OUTPUT DATA PROCESSING 

Introduct ion  
Itha relation& betpeen the reflection and transm$aslon 

variables used in this we&a?%d ot- variables suoh ~ L B  

neutron anguler~ dfstributlon functions, vector currents, 
scalar fluxes, and dose commonly used in neutron trafisport 
theory are summarized in t h i s  chapter, 

discussed. 

in the same manner as Chandrasekhay's S and T functions [2]. 
This reflection must be divided by four times the exit 
direction cosine in order to correspond to the reflection 
values tabulated by Bellman, Kalaba, and Prestrud 13 

The transmission variable used in this work includes 
only diffusely transmitted neutrons, %.e., neutrons that 
have undergone at least one interaction with the medium 
through which the neutrons have passed. The uncollided 
component of the transmission in plane geometry is 

The relation between point and plane sources is also 

The reflection and transmission variables are defined 

E l  

1 0 when SE # SI 

is the incident neutron state index for a neutron 3 ,k where SI 
in direction cosine rgroup and energy group k 

SE1,, is the exit neutron state ("3 ,k 
index for a neutron in direction cosine group 1 and energy 
group m + m )  , NEREG is the number of 
energy groups, MU is the value of the direction cosine 

96 

= NEREG(3-1) + k), 

(SEl,m = NEREG(1-1) 

3 
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assigned to the jth groupp WMU is the width af the Jth 
direction eostne group, WEk I$ the width of the Bth 
energy group, 
in the kth energy group, and X is the slab thickness. 

is obtained by adding the 
corresponding elements of the diffuse transmission, T, and 
the uncollided component, Tu. 

j 

Task is the total macrosopic cross section 

The total transmission, Tt 

Relations Between Reflection and Transmlssion and Other 
Variables Commonly Used in Neutron Transport Theory 

of Davison and Sykes [24] has a component for each 
incident and exit particle state and is denoted by 
PSI(SE1,,;SIJ ,k) 
monoenergetic case is the same as the intensity 
of Chandrasekhar [ 21 

A systematic nomenclature is used in which PSIRD 
represents the PSI function based on the diffusely reflected 
neutrons at the face of the slab on which source neutrons 
are incident in state SI 
function based on the diffuse transmission at the exit face 

- 2  
The neutron angular distribution function @( f L ,  A- ) 

The PSI function for the one-dimensional, 

I( 7,,& 0) 

PSITD represents the PSI 
j ,k' 

of the slab, and PSITT is based on the total transmission. 
The PSI functions are obtained by dividing the reflection or 

exit state, io$., 
iransmieeiuii 57 &vuI *---- L a - - -  vIIuyy +ha -...- il+-nr,+.+nn - _ - _ _ _ _ _ - -  C n R I n e  of the 
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where the  a d d i t i o n  o f  NS t o  t h e  e x i t  s t a t e  index i n  (2) 
s i g n i f i e s  that the e x i t  d i r e c t i o n  cosine i s  the  p o s i t i v e  ( s e e  
Chapter I11 f o r  f u r t h e r  d e t a i l s  on t he  s t a t e  indexing scheme). 

t abula ted  by Bellman, Kalaba, and Pres t rud  [13] f o r  t he  mono- 
ene rge t i c  case wi th  Ipo t r ap ic  i n  the  l abora to ry  coordinate  
system s c a t t e r i n g  . 
Sykes [24] 
and each e x i t  energy groups t h e  e x i t  angular  dependence 
having been removed by in t eg ra t ion .  A t  t h i s  po in t ,  t he  
assumption i s  made that the source has an i so t ro ,p lc  angular  
d i s t r i b u t i o n  and the iqc ident  a g u l a r  dependence i s  a l s o  
removed by i n t e g r a t i o n .  With t h i s  assumption, t he  s e c t o r  
cu r ren t  has a component J 
energy group. The d i f fuse  and t o t a l  vec to r  c u r r e n t s  a t  the 
i nc iden t  ( 0 ) face  and  a t  t h e  f a c e  a t  d i s t ance  x from t h e  
source f a c e  a r e  

Note that PSIBD is  the same as the  r e f l e c t i o n  func t ion  

The neutron vec tor  n e t  cu r ren t  j(5) of  Dsvison and 
has components for. each inc iden t  neutron s t a t e  

f o r  each i n c i d e n t  apd e x i t  m 9k 

NMUREG 
J O D m , k  = a c W M U 4  

j=1 

NMUREG 

JXTm,  k 
u 
j=1 

NMUREG 
n 

u 
1= 1 

(5 )  



99 
where t h e  minus sign i n  ( 6 )  comes about because the  d i f f u s e  
r e f l e c t e d  cu r ren t  i s  d i r ec t ed  in the  minus x d i r e c t i o n  and 
6m,k is  the Kronecker de l ta .  

component f o r  each inc ident  p a r t i c l e  s t a t e  and each e x i t  
energy range. With the assumption o f  an l s o t r o p l c  source 
and an i n t e g r a t i o n  over the  inc iden t  sourceb  t h e  s c a l a r  f l u x  
has a component 
group. The d i f f u s e  and t o t a l  s c a l a r  f l u x e s  a t  t h e  inc iden t  
( 0 )  face  and a t  t h e  f ace  a t  d is tance  x from the source f a c e  
a r e  

The scalar fluxP(F) of Davison and Sykes [24] has a 

RHO,,k f o r  each inc iden t  e x i t  and energy 

NMIJREG NMUREG 

RHOOD,,, = ~ ~ W M U l  cWMJl R(SE1 +BS;SI, I k) ( 9 )  
Mul j=l 1= 1 

BHOOT, ,k = RHOODm,k 

"MUREG NMUREG 

i 

The s c a l a r  flux due t o  a u n i t  i s o t r o p i c  f i s s i o n  sohrce 
hqs a combonent f o r  each e x i t  energy group and i s  given by 

NEREG 
FLUXl = 1 FISSk RHOXTm,k 

k= 1 

where FISSk i s  t h e  f r a c t i o n  of  f i s s i o n  spectrum neutrons 
emitted i n  e n e r g j  group k. 

(13) 
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The dose a t  the  e q i t  f a c e  of t h e  s lab  due t o  a u n i t  
i s o t r o p i c  f i , s s i o n  source is 

NEREG 
DOSE = WE1 RFFCDl FLUXl 

1= 1 
(14) 

where RFFCD, i s  t h e  flux-to-dose conversion f a c t o r .  The 
.L 

usual  k i t s  f o r  RFFCDl &re m i l l i r a d / h r  per neutron/cm2-sec k5]. 

Relat iod Between Point  ,and Plane Sources 

The moments method r e s u l t s  tabula ted  by Krumbein 
[263 a r e  m o s t l y  f o r  a poin t  source geometry whereas 

the i n v a r i a n t  imbedding method r e s u i t s  a r e  f o r  a plane 
source geometry, 

zelatiolng a r e  vh l id  [27] 
I n  an i n f i n i t e ,  homogeous medl,um, t h e  fol lowing 

J 4  

where D(z) is t he  dose a t  d i s t ance  z f rom a uni-c p o i n i  ur 
plane source. 

r e s u l t s  t o  plane geometry., It should be noted that t h e  
a p p l i c a t i o n  of (16)  t o  the rnva r i an t  imbedding r e s u l t s  is not 
s t r i c t l y  v a l i d  because the i n v a r i a n t  imbedding r e s u l t s  a r e  
f o r  a f i n i t e  medium and include the  e f f e c t s  of t he  boundaries, 

This d i f f e rence  between an  i n f i n i t e  and a finite medium 
makes an exact  comparison between the moments method and t h e  
i n v a r i a n t  imbedding method r e s u l t s  impossible,  however the  
d i f f e rence  should be small f o r  a very t h i c k  slab. 

Equation (15) may be used t o  convert  t h e  moments method 
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APPENDIX C 
COMPUTER PROGUM FOR THE SOLUTION OF THE 

REFLECTION AND TRBNSMISSIOB EQUAnIONS 

The computer program f o r  the  s o l u t i o n  o f  the plane 
geometry r e f l e c t i o n  and t ransmission equat ions given 
in Ohapter I11 has been named program STAR where STAR s tands  
f o r  S l a b  Transmission and Ref lec t ion ,  Program Star i s  w r i t t e n  
in t he  MAD programming language [30] and is s u i t a b l e  f o r  use 
w i t h  e i t h e r  the  time shar ing o r  normal FMS batch processing 
systems a t  t h e  M. I. T. computation center .  

A l l  d a t a  is read  using t h e  s i q p l i f i e d  "read data" s t a t e -  
ment which r eads  data in the  form A z l., B = 2., ... u n t i l  
t h e  symbol * i s  encountered. A comment is pr in t ed  before 
each use of t h e  "read data" statement i n d i c a t i n g  w h a t  in for -  
mation i s  requi red .  The data requi red  by any s i n g l e  ["read data" 
s ta tement  may be arranged i n  any order  (or omitted if no change 
from previous data is+ des i r ed )  except that a r r a y s  must fo l low 
t h e  M,AD convention o f  varying the las t  s u b s c r i p t  most r a p i d l y  
and t e rmina t ing  * must always be preeent e v e n , i f  no data 
is t o  be read  in. 

statement .  

imation given i n  Chapter1 111, w i t h  t he  automatic s t e p  s i z e  
adjustment ,  i f  des i r ed ,  t o  c o n t r o l  t h e  e r r o r  buildup and t o  
a l l o w  easy in t roduc t ion  o f  m a t e r i a l s  of widely varying p rope r t i e s .  

The program w i l l  handle up bo 64 p a r t i c l e  s t a t e s  in i t s  
present  form,  i .e.,  the product of t he  number o f  energy 
groups and the number of angular  groups must by 32 or less 
(each  angular  group r ep resen t s  two p a r t i c l e  s t a t e s  w i t h  
d i r e c t i o n  cos ines  of opposi te  s i g n ) .  Up t o  256 d i f f e r e n t  
r eg ions  in a heterogeneous a r r a y  of slabs may be used. 

Program STAR is divided i n t o  a main program and f i v e  
subprograms. The required and op t iona l  input  i s  given 

Most of the  output  is pr in t ed  out  using the  " p r i n t  r e s u l t s "  

m k s  A&&" n-*nm**m E--="- iieer~ the f i r s t - o r d e r  exponent ia l  approx- 

I 

1 n? 
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in the remarks in the first portion of the input subprogram. 

An abbrlviated description in words of the main program 
of Program STAR is given (the figures in parentheses are 
statement numbers) followed by flow diagrams for the 
subprograms. 

input follow. The sample problem was used for the rod model 
problems and illustrates the ability to read in new parameters 
controlling the spacing of the printed points, etc., by 
using the heterogeneous feature and reading in the new 
parameters along with the same or different cross sections 
when desired. 

A listing of the main and subprograms and sample problem 

Main Program Description 

Re:iioyrint, and process input data; inittalize variables 

Compute right-hand-sides of R and T differential equations 
; Q Q ~  1 

Exchenge variables 
Check step sizes (4415) 
Compute new R and T values 
Compute right-hand-sides of R and T differential equations 
Compute estimated stepwise errors 

(QQ25) 

Tn------- ntrG&.LGVG& -+an Y W - ~  a l a 0  ---_ f 9  fixed (QQ80) 
1) incremest variables ( Q Q l l O )  
2) print output, if desired 
3 )  exchange variables 
4) cheqk end of problem conditibns and reflection 

5) transfer back to statement QQ25 

I(QQ120) 

equation cutoff criteribn 

Whenever o n l y  transmission was calculated: 

1) increment variables [QQlOO) 
2) calculate new step size if reflection has been set 

to a constant value and transmission step size has 
not reached its maximum allowable value 

3) print output, if desired 
4) exchange variables 



5 )  check end of problem cbnditions and reflection 
equation cutoff criterion 

6) check index for next reflection computation(when 
transmission step size is smaller than reflection 
step size,) 

7) whenever,reflection has been set to a constant valu6: 
a) setL transmission only control parameter 
b) chick step size 

8) transfer back to statement QQ25 

When both reflection and transmission were calculated and 
the step size is not fixed: 

1) compute new step size based on the error criterion 

2) whenever estimated error is over twice as large as 
and estimated stepwise error 

the error criterion 
a) iccrement index Which will cause problem to 

b) print step sizes, estimated errors, etc. 
c) check index and terminate problem if index 

d) change to new step sizes and return to statement 

terminate when index reaches 20 

exceeds 20 

4415 
3) increment variables 
4) print output, if desired 
5) check end of problem conditions and reflection 
6) exchange variables 
7) check step sizes 
8) when the error criterion is less than equal to zero 

a) fix the step size at the smaller of the new 
reflection and transmission stop sizes 

b) set for transmission only calculbtion when the 
reflection equation cutoff condition has been 
reached 

9 )  change to new step sizes allowing the transmission 
step size to be an integral subdivision of the 
reflection step size if called for 

10) set index which counts transmission only computa- 
tions back to zero 

11) whenever the transmission step size is l e q s  than 
the reflection step size, set transmission only 
control parameter , 

12) whenever reflectioh equation cutoff coqdition has 
been reached, set transmission only control para- 
meter 

13) return to statement QQ25. 

equation cutoff criterion 
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7 1  P R O C E S S I N G  

. 

A group of  program i n s t r u c t i o n s  which per- 
form a processing func t ion  o f  t h e  program. U 

INPUT/OUTPUT 
Any funct ion of  an input/output device. 

D E C I S I O N  
The decis ion func t ion  used t o  document 
point  i n  the program where a branch t o  
a l t e r n a t e  pa ths  i s  poss ib le .  

P R E D E F I N E D  P R O C E S S  
A group of opera t ions  not  d e t a i l e d  i n  t h e  
p a r t i c u l a r  s e t  of  flow cha r t s .  \ 

TERMINAL 
The beginning, end, o r  a po in t  of  0 i n t e r r u p t i o n  i n  a program. 

CONNECTOR 
A n  e n t r y  from, o r  an e x i t  t o ,  aqother  p a r t  
o f  t h e  program flowchart .  

O F F P A G E  CONNECTOR 
A connector used in s t ead  of the  connector 
symbol t o  des igna te  en t ry  t o  o r  e x i t  f rom 
a page. 

U 

PROGRAM FLOWCHART SYMBOLS 



FLOW DIAGRAM FOR INPUT SUBPROGRAM (PAGE 1 OF 1 )  



f 
.- .- 

A 

106 

FLOW DIAGRBM POR OUTPUT SUBPROGUM (PAGE 1 OF 2 )  
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FLOW DIAGRAM FOR OUTPUT SUBPROGRAM (PAGE 2 OF 2 )  
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FLOW DIAGRAM FOR RHS SUBPROGRAM (PAGE 1 OF 1 )  
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FLOW DIAGRAM FOR DATA SUBPROGRAM (PAGE 1 OF 2)  



110 
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FLOP DIAGkAM FOR DATA SUBPROGRAM (PAGE 2 OF 2)  
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FLOW DIAGRBM FOR T I M  SUBPROGRAM ( P A G E  1 OF 1 1  
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The l i s t i n g s  o f  Program STAR and the' sample problem 
occupy pages 112 through 137 o.f the  o r i g i n a l  copies  o f  
t h i s  t h e s i s  f i l e d  w i t h  t h e  Nuclear Engineering Department, 
The Massachtlsetts I n s t i t u t e  of  Technology, Cambridge, 
Massachusetts 



APPENDIX D 

. 

COMPUTER PROGRAM FOR THE PREPARATION OF INPUT U T A  

The c ross  s e c t i o n  data prepara t ion  program i s  w r i t t e n  
i n  t h e  MAD programming language [30] and i s  s u i t a b l e  f o r  use 
w i t h  e i t h e r  t h e  time shar ing system o r  normal FMS batch 
processing a t  t h e  M. I. T, computation center .  

A l l  d a t a  i s  read  using t h e  s impl i f i ed  "read d a t a "  
statement which reads data i n  t h e  form A=1., B=2., C=3.,.... 
u n t i l  t h e  symbol * i s  encourtered. A comment i s  p r in t ed  
before  each use o f  t h e  " r e a d  data" s ta tement  i n d i c a t i n g  w h a t  
information i s  requi red .  The data requi red  by any s i n g l e  
"read d a t a "  s ta tement  may be arranged i n  any order  (or omitted 
I f  no change from previous data i s  d e s i r e d )  except that 
a r r a y s  must fo l low the  MAD convention o f  varying t h e  l a s t  
s u b s c r i p t  most  r a p i d l y  and 8 terminat ing * must be present  
even i f  no data i s  t o  be read in .  

A l l  data i s  p r i n t e d  out  us ing  the  " p r i n t  r e s u l t s "  
s ta tement ,  

The program i s  dimensioned t o  accept  c ros s  s e c t i o n s  
for a maximum of  5 nucli,des tabula ted  a t  100 energy p o i n t s  
o r  any o the r  combination o f  nuc l ides  and energ ies  r e q u i r i n g  
500 o r  less  s to rage  loca t ions ,  

The fol lowing data i s  punched out i n  a s u l t a b l e  format  
t o  be read w i t h  t h e  "read d a t a "  statement i n  program STAR: 

1. BEREG = number of energy groups (maximum of 1 6 )  
2, 

3.  W(1). ..WE(NEREG) = w i d t h  o f  each energy group 
4. FISS(l)...FISS(NEREG) = f r a c t i o n  o f  f i s s b n  

spectrum i n  each energy group 
5. NMUREG =: number of  d i r e c t i o n  cosine groups 

(maximum o f  16)(NS = NEREGgHMUREG must be 
32 b r  l e s s )  

1 J 

E(l)..,E(NEREG) = energy assigned t o  each energy 
graup 
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60 MU(1) ... MU(IQMUREG) = d i r e c t i o n  cosine assigned t o  

each d i r e c t i o n  cosine group 
7. WMU(1) ...WMU( EMUBEG) = w i d t h  of each d i r e c t i o n  

cosine group 
8. T C S ( 1 )  ... TCS(NEREG) = t o t a l  macrosopic c r o s s  section 

f o r  saob energy group 
9.  C ( l )  ... C(NERE(3) = mean number of  secondaries  per  

c o l l i s i o n  f o r  each energy group 
10, SCS(1,1),..SOS(NS,2+~s) = s t a t e - t o - s t a t e  t r a n s f e r  

p robab i l i t y  matrix.  

A l i s t i n g  of t he  program, sample problem i n p u t ,  gnd 
sample problem output  follower. The sample problem was used 
for t he  prepara t ion  of  4 energy group, 2 angular  group c ross  
s e c t i o n s  f o r  polyethylene based on carbon and hyrdrogen c r o s s  
s e c t i o n s  t abu la t ed  a t  9 energy p o i n t s  i n  the  energy i n t e r v a l  
from .33 Mev t o  18.017 MeV.  
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 hi l i s t i n g t i  blf t h e  ckoss sgrctibn d a t a  p r t p a r a t i o c  
program and sample problem inpu t  and output occupy 
pages 140 through 167 of the o r i g i n a l  copies  o f  t h i s  
thes is  f i l e d  wi th  t h e  Nuclear Engineering Department, 
The Massachusetts I n s t i t u t e  of  Technology, Cambriidge, 
Mas sac hhse t t s . 
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